RNA分子以太旋涡

核糖核苷酸分子通过耦合作用形成长链大分子结构,就是核糖核酸分子,简写为RNA,与脱氧核糖核酸DNA一起,在现代生命科学里被认为是遗传物质,这个认识是错误的,会在后续基因原理章节来解析遗传的具体过程,这里只描绘糖核苷酸分子构成RNA时的结构形态。这是通过水合磷酸分子的主体耦合作用结合在一起,并继续耦合核糖分子、碱基分子形成长链大分子结构来实现的。

水合磷酸分子除了与核糖分子、碱基分子通过耦合形态形成核糖核苷酸分子之外,其自身分子之间,也存在两种耦合形态,分别是同旋异极吸附作用与范德华力吸附作用。

1、水合磷酸分子同旋异极吸附作用

水合磷酸分子的同旋异极吸附作用,就是数量众多、相同旋转方向的水合磷酸分子以太旋涡,其涡轴重合,涡心在同一条线上,彼此通过相互间的异极吸附作用,耦合形成一条长链大分子形态。尔后同样数量众多的核糖分子、碱基分子通过范德华力吸附在这条长链的边侧或顶端,形成一条核糖核苷酸长链分子,是为核糖核酸RNA的单链结构形态,周边空间存在次生以太旋涡,及相应的振动力场与流动力场。

单链RNA结构形态,又应其链上核糖核苷酸分子数量的多寡,分为长链RNA与短链RNA。长链RNA就是其分子链上的核糖核苷酸分子数量相对很多,可以是成千上万个不等,短链RNA就是其分子链上的核糖核苷酸分子数量相对要少,可以是几个几十个不等。

2、水合磷酸分子范德华力吸附作用

水合磷酸分子范德华力吸附作用,就是两条旋转方向不同的长链水合磷酸分子,其中一条长链分子的端点,通过范德华力作用,吸附在另一条长链分子的边侧,形成耦合结构形态。尔后核糖分子、碱基分子通过范德华力吸附在这两条水合磷酸分子长链的边侧或顶端,形成一条核糖核苷酸双链分子。如此吸附作用下,前一条RNA构成后一条RNA的分叉结构,如树枝树根的分叉形态,形成一条带分叉结构的核糖核苷酸长链分子,周边空间存在次生以太旋涡,及相应的振动力场与流动力场。

分叉结构RNA又可分为多分叉结构RNA,与少分叉结构RNA。多分叉结构RNA,就是其分子链上的分叉数量要多,相应RNA片段数量要多,可以有几十上百个分叉;少分叉结构RN就是其分子链上的分叉数量要少,相应的RNA片段数量要少,可以有几个十几个分叉。

由于在同一分子中,范德华力的吸附作用要小于同旋异极吸附作用,因此这种分叉结构形态下的RNA的稳定性要小于单链结构下的RNA,因外界的振动力场与流动力学场干扰而相对容易地分解为单链结构下的RNA片段。

RNA这种长链分子结构并不是天然地由水合磷酸分子携带核糖分子、碱基分子以随机组合的方式再通过共价键耦合作用及范德华力吸引形成的,而是被一种特定的物质作用所约束与规范,才呈现对应结构状态,甚至包括长链分子的长短、核糖分子、碱基分子在长链分子上的分布规律也都是如此被约束与规范,会在基因原理中详细阐述。

由于RNA的振动力场与流动力场,只是其基础单元核糖核苷酸分子的振动力场与流动力场叠加后的效果,因此两种力场的对比是同核糖核苷酸分子的振动力场与流动力场对比结果是一致的,即:

流动力场>>振动力场

脂类分子以太旋涡

同糖类相似,脂类也是生命体的重要组成要素之一,是细胞组织的重要组成成分,在此做一番以太旋涡理论下的结构简单说明,更多机理会在后面章节阐述。脂类是油、脂肪、类脂的总称。包括油脂(甘油三酯)和类脂(磷脂、固醇类)。食物中的油脂主要是油、脂肪,一般把常温下是液体的称作油,而把常温下是固体的称作脂肪。

以甘油三酯为例。现代科学认识里,甘油三酯作为一种有机化合物,被认为是由甘油的3个羟基与3个脂肪酸分子酯化生成的甘油酯。为非极性物质,以非水合形式贮存于体内,是体内储量最大和产能最多的能源物质。植物性三酰甘油多为油,动物性三酰甘油多为脂。固、液态的三酰甘油统称为油脂。

关于甘油三酯的结构,以太论下另有理解,从甘油分子以太旋涡的结构解析说起。

甘油就是丙三醇,为有机化合物,化学式为C3H8O3,物理性质是无色无臭透明黏稠液体,有甘甜味,能从空气中吸收水气,也能吸收硫化氢、氰化氢和二氧化硫,与水和醇类、胺类、酚类以任何比例混溶,不溶于苯、氯仿、四氯化碳、二硫化碳、石油醚和油类,主要用作有机化工原料,也可用作分析试剂和润滑性泻药。

以太论下,甘油的结构式是(CH2·OH)2·(CH·OH)。即先3个O与3个H耦合成3个OH,及2个C与4个耦合成2个CH2,1个C与1个H耦合成1个CH;再2个CH2与个2个OH耦合成2个(CH2·OH),及1个CH与1个OH耦合成1个(CH·OH);最后2个(CH2·OH)与1个(CH·OH)耦合成1 个(CH2·OH)2·(CH·OH)。

甘油分子是一个(CH·OH)与两个(CH2·OH)在同一平面上通过范德华力作用耦合在一起及互绕的次生以太旋涡结构,其中的H原子以太旋涡,仍只是作为C、O的“远核大电子”形态存在,强化C、O以太旋涡的偏向性,极限偏向状态如一枚三叶草,并对外界表达出相应次生以太旋涡的振动力场与流动力场形态。

可以发现甘油中带一个(CH·OH)离子以太旋涡,这与糖类分子的基础结构特征一样,(CH·OH)发出对应振动波,具有类似糖分子的味觉信号,这也是甘油具有甘甜味并被命名的原因。而甘油中另含有两个(CH2·OH)离子以太旋涡,这(CH2·OH)中的CH2,其中的碳原子由于携带两个氢原子以太旋涡成为其“远核外大电子”,强化了碳原子的活跃性,让CH2成为“连珠频率中,偏向高,角动量高”的次生以太旋涡,这两个离子以太旋涡也存在OH离子以太旋涡,形成(CH2·OH)耦合结构,其离子以太旋涡有大范围的流动力场,结合(CH·OH)的流动力场,如此多以太流动力场的叠加,让甘油分子具有作用更广泛的流动力场,从而让甘油分子有很强的吸附性,在宏观上表现有很强的粘性、吸水性,并类似于糖浆。其中(CH2·OH)是脂类的结构特征,即

脂类分子的结构特征之一是含两个(CH2·OH)离子以太旋涡

(CH2·OH)离子以太旋涡,可以称为脂基。

甘油三脂的另一个大单元是脂肪酸。脂肪酸是由碳、氢、氧三种元素组成的一类有机化合物,是中性脂肪、磷脂和糖脂的主要成分。现代科学根据分子内部碳链长度的不同又可将其分为:短链脂肪酸、中链脂肪酸、长链脂肪酸。三者碳链上的碳原子数分别是小于6,6—12,大于12。脂肪酸又可根据碳氢链饱和与不饱和的不同分为3类,即饱和脂肪酸,单不饱和脂肪酸,多不饱和脂肪酸,这些知识可以参考生物学书本描绘,这里不再赘述。

脂肪酸种类繁多,其实只是多个丙三醇分子通过化合脱水后,其碳原子通过多原子以太旋涡之间的耦合作用而得,其化合反应式是

n[(CH2·OH)2·(CH·OH)] = (CH2)a·(CH2·OH)2·(CH)b +(H2O)c+X

反向的分解反应式为:

(CH2)a·(CH2·OH)2·(CH)b +(H2O)c = n[(CH2·OH)2·(CH·OH)] +Y

其中n、a、b、c为自然数,n>c>a>b,X、Y为附加生成物。

脂类碳链上的各个碳原子,都带有两个氢原子,让碳原子从原来的“连珠频率低,偏向低,角动量高”的原子以太旋涡,转变成“连珠频率中,偏向高,角动量高”的次生以太旋涡,这种CH2耦合结构下的碳原子活跃性,比CH耦合结构下的碳原子活跃性,还要高一个强度层次,导致如此耦合结构下的碳链,有更大范围的次生以太旋涡流动力场。碳链应碳原子间的范德华力作用,或形成环状结构,或形成富勒烯结构,让脂肪酸有相对强的稳定性,使其不能被水溶解,整个分子以太旋涡空间又类似于一个空泡,在宏观上使得其密度比水轻而能浮在水面。脂类分子的振动力场与流动力场对比是:

流动力场 >> 振动力场

甘油三脂分子并不是甘油分子与脂肪酸分子通过脂化反应的结构,而是甘油分子作为脂类的最小单元,在脂类的分解反应中,脂类分子与水分子中的OH结合后,再水解形成甘油的主体结构(CH2·OH)、(CH·OH)离子以太旋涡及长碳链(CH2)n,这两种离子以太旋涡再通过范德华力耦合成甘油分子。

甘油(丙三醇)之于脂类,就如氨基酸之于蛋白质。

而长碳链(CH2)n,又作CH2·CH2·CH2……CH2,其两端以太旋涡涡口,可以各吸引一个水分子中OH,结合形成脂肪酸(CH2·OH)·(CH2)n-m·(CH2·OH),这也是脂肪酸通常含两个(CH2·OH)的物质作用机制,人们发现众多脂肪酸的分子中都有两个氧原子,如油酸是C18H34O2,亚油酸是C18H32O2,亚麻酸是C18H30O2,等等,不明就里,就是这个原因导致。脂肪酸只是这一反应的某一阶段的产物,被当成脂类的结构单元之一。长链脂肪酸可以继续水解形成甘油与中链、短链脂肪酸,直到整个碳链全断开并水合形成甘油分子。脂类的整个水解反应如剥洋葱皮,一层一层将CH2从(CH2)n碳链上剥离,CH2再与水分子中的OH、H形成(CH2·OH)、(CH·OH)离子以太旋涡及甘油分子。反之甘油又通过化合反应脱水后形成脂类分子。

脂类分子的结构特征之二是含一条由多个CH2离子以太旋涡耦合成的碳链

脂类在生命活动过程中起着重要的作用,与糖类一样,也被科学界认为是一切生命体维持生命活动所需能量的重要来源,象甘油三酯被认为是“在中、低强度运动中,其分解能提供运动肌肉所需的大部分能量”。这种认识也是错的,脂类不是生命体运动的主要能量来源,而是生命体的主要构架成分之一。

科学界也是根据人体食用脂类之后会发热,提高活力,及脂类独立在外界可以燃烧发光发热,由此断定脂类是作为人体的主要能量来源,与糖类一样,是非常粗浅且错误的结论。人体生命所需的能量,都不是通过糖类、脂类、蛋白质在体内“燃烧”释放能量来获得的,而是直接来自于空气,会在后面“呼吸原理”小节论述。

何以糖类分子中主要存在CH碳链与(CH·OH),而脂类分子中主要存在CH2碳链与(CH2·OH),也即脂类碳链上的碳原子比糖类碳链上的碳原子多一个氢原子呢?这在现代科学里没有专门解释,一般只是说这是基因作用与自然演化的结果。在以太论下,这一现象另有具体的物质作用原理来解析,关键仍是以太振动力场与以太流动力场的对比,会在后面章节说明。

糖类分子以太旋涡

糖类在现代科学认识里,是多羟基醛、多羟基酮以及能水解而生成多羟基醛或多羟基酮的有机化合物,可分为单糖、二糖和多糖等。糖类是自然界中广泛分布的一类重要的有机化合物。包含很多物质形态,如日常食用的蔗糖、粮食中的淀粉、植物体中的纤维素、人体血液中的葡萄糖等等。植物中最重要的糖是淀粉和纤维素,动物细胞中最重要的多糖是糖原。

以葡萄糖为例,葡萄糖的分子式是C6H12O6,以太旋涡理论下,其结构式是(CH·OH)6,即先6个C与6个H形成6个CH,及6个O与6个H形成6个OH,再6个CH与6个OH耦合成6个(CH·OH),最后6个(CH·OH)耦合成一个(CH·OH)6。这是一个环状互绕结构,6个(CH·OH)在同一个平面上互绕。

葡萄糖分子是六个(CH·OH)在同一平面上通过范德华力作用耦合在一起及互绕的次生以太旋涡结构,极限偏向状态如一个六角星,并对外界表达出相应次生以太旋涡的振动力场与流动力场形态。糖类分子的结构特征是存在多个(CH·OH)离子以太旋涡。其它的各类糖分子都是相类似的耦合结构。

可以发现葡萄糖分子以太旋涡的空间结构与核糖分子以太旋涡的空间结构有一样基础单元:(CH·OH)离子以太旋涡,只是葡萄糖分子比核糖分子少一个(CH·OH)。又由于(CH·OH)之间是通过范德华力吸引作用耦合在一起,葡萄糖分子内的(CH·OH)相对距离要大,因此相比较核糖分子而言,更容易受外界振动而导致结构解体。宏观上表现为葡萄糖更容易被肠胃吸收。

糖类分子的结构特征之一是含多个(CH·OH)离子以太旋涡

(CH·OH)离子以太旋涡,可称为糖基。

葡萄糖是多(CH·OH)的环形结构与旋涡运动形态,让葡萄糖次生分子以太旋涡的周边空间存在强流动力场,表达为很强的收敛吸附作用,可以继续相互吸引形成更长的糖链或膜,是其能成为生命体组织结构主要成分的物质作用基础,并在宏观上构成的物质如蔗糖、淀粉溶水后表现上有粘性。其分子以太旋涡的流动力场相对振动力场要强,两者的对比是:

流动力场 >> 振动力场

葡萄糖分子以太旋涡之间,也可以通过同旋异极吸附作用耦合在一起,成为长糖链分子,长糖链分子再通过范德华力吸引互绕,形成诸如蔗糖之类的物质。长糖链分子的周边空间,有相应的次生以太旋涡,及振动力场与流动力场分布。

糖类分子的结构特征之二是含一条或多条由多个CH离子以太旋涡耦合成的碳链

糖类在生命活动过程中起着重要的作用,被科学界认为是一切生命体维持生命活动所需能量的主要来源。这种认识是错的,糖类不是生命体运动、呼吸、思考的主要能量来源,而是生命体的主要构架成分之一。

科学界根据人体食用糖类之后会发热,吃饱后人体有更高活力,及糖类独立在外界可以燃烧发光发热,由此断定糖类是作为人体的主要能量来源,是非常粗浅且错误的结论。让人感觉温暖只是糖类分子以太旋涡在分解与化合过程中,产生红外波段的以太振动传递,从而提升人体温度。糖类在消化过程中能导致人体升温,与人体肌肉运动所需的能量是两码时。人体肌肉运动、思考的能量不是通过糖类在体内“燃烧”释放能量来获得的,而是直接来自于空气,会在后面“呼吸原理”小节论述。

 

4、三分子耦合结构

水合磷酸分子、核糖分子、碱基分子通过三种分子之间的耦合作用形成整体的核糖核苷酸分子结构。三种分子之间的耦合作用分两种组合模式:

一是同旋异极吸附作用组合,即水合磷酸分子、核糖分子、碱基分子各自的主涡轴重合,涡心在一条直线上,自转方向相同,次生以太旋涡的黄道面相互平行,如宝塔般层层累加,是为水合磷酸—核糖—碱基串连结构下的核糖核苷酸分子。

二是同旋异极吸附作用+范德华力组合,即核糖分子、碱基分子各自的涡轴重合,涡心在一条直线上,自转方向相同,两者的次生以太旋涡的黄道面相互平行,但两者与水合磷酸分子的涡轴相互垂直,再通过范德华力吸引作用,与水合磷酸分子耦合在一起,是为水合磷酸+核糖—碱基的串—并连结构下的核糖核苷酸分子。

这两种耦合模式结构下的核糖核苷酸分子,通过内部的水合磷酸分子间的同旋异极吸附作用,可以继续耦合形成单链型RNA长链、分叉型RNA长链,等等。串连结构下的糖核苷酸分子一般处在RNA分子的中间部分,分子数量相对较多,串—并连结构的核糖核苷酸分子一般在RNA分子的末端,分子相对数量较少。

核糖核苷酸分子的振动力场与流动力场,分别是水合磷酸分子、核糖分子、碱基分子这三种分子的振动力场及流动力场的叠加状态,因此其振动力场与流动力场,都得到很大的强化。两种力场的对比是:

流动力场>>振动力场

由耦合结构的作用机制可知,水合磷酸分子自身,核糖分子自身,碱基分子自身,均会形成相同分子之间的耦合结构,这分别就是长链水合磷酸分子,长链核糖分子,碱基配对结构,会在后面继续描绘。

 

3、五种碱基

核糖核酸RNA与脱氧核糖核酸DNA,其组成单元分别是核糖核苷酸分子与脱氧核糖核苷酸分子,两种分子各有四种碱基组合形态,共五种碱基类型。所带的不同碱基分别是核糖核苷酸分子由四种碱基,即腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、尿嘧啶(U)构成的,脱氧核糖核苷酸分子则由四种碱基,即腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)构成的。这里分别就这五种碱基作一个以太旋涡理论下的模型结构介绍。

——>腺嘌呤(A)

腺嘌呤,就是维生素B4,又称6-氨基嘌呤,化学分子式为C5H5N5,碱基代码为A。

以太旋涡理论下,腺嘌呤的化学结构式为(C·NH)5,即先五个N与五个H耦合成为五个—(NH),再五个C与五个(NH)耦合成五个C·(NH),最后五个C·(NH)耦合成为(C·NH)5。

在腺嘌呤分子以太旋涡中,五个C·(NH)以在同一平面上通过范德华力作用耦合在一起及互绕,极限偏向状态就如一个五角星形态,并在周边空间形成次生以太旋涡,及相应的流场与振动力场。

也可以看出腺嘌呤分子以太旋涡与核糖分子以太旋涡,有几近一样的空间结构形态与运动模式。又由于核糖分子中的碳原子比腺嘌呤分子中的碳原子多一个氢原子,导致核糖分子以太旋涡半径与力场范围比腺嘌呤分子以太旋涡半径与力场范围要来得大一些,但分子结构的稳定性则要差一些。

——>鸟嘌呤(G)

鸟嘌呤的化学分子式为C5H5N5O,碱基代码为G。

以太旋涡理论下,鸟嘌呤的化学结构式为(C·NH)5·O,即先五个N与五个H耦合成为五个(NH),再五个C与五个(NH)耦合成五个C·(NH),及后五个C·(NH)耦合成(C·NH)5,最后(C·NH)5与一个O耦合成(C·NH)5·O。

在鸟嘌呤分子以太旋涡中,五个C·(NH)以O为核心在同一平面上通过范德华力作用耦合在一起及互绕,极限偏向状态就如一个五角星形态,并在周边空间形成次生以太旋涡,及相应的流场与振动力场。

可以看出鸟嘌呤比腺嘌呤在以太旋涡涡心处多一个O原子以太旋涡,其它结构均一致,因此其振动力场与流动力场形态都要强于腺嘌呤。

——>胞嘧啶(C)

胞嘧啶,学名为4-氨基-2-羰基嘧啶,化学分子式为C4H5N3O,碱基代码为C。

以太旋涡理论下,胞嘧啶的化学结构式为(C·NH)3·O·CH2,即先三个N与三个H耦合成三个(NH),一个C与二个H耦合成为一个(CH2);再三个C与三个(NH)耦合成为三个C·(NH),及一个(CH2)与一个O耦合成为一个(O·CH2);最后三个C·(NH)与一个(O·CH2)耦合成为(C·NH)3·O·CH2。

在胞嘧啶分子以太旋涡中,一个(O·CH2)与三个C·(NH),在同一平面上通过范德华力作用耦合在一起及互绕,其中(O·CH2)中的O与C通过同旋异极吸附作用耦合在一起,极限偏向状态就如一个正三角星形态,并在周边空间形成次生以太旋涡,及相应的振动力场与流动力场。

——>尿嘧啶(U)

尿嘧啶 ,化学分子式为C4H4N2O2,碱基代码为U,是RNA特有的碱基。

以太旋涡理论下,尿嘧啶的化学结构式为(C·OH)2·(C·NH)2,即先二个O与二个H耦合成为二个(OH),及二个N与二个H耦合成为二个(NH);再二个C与二个OH耦合成为二个C·(OH),及二个C与二个—NH耦合成二个C·(NH);最后是二个C·(OH)与二个C·(NH)耦合成(CH·OH)2·(C·NH)2。

在尿嘧啶分子以太旋涡中,四个离子以太旋涡,即两个C·(OH)与两个C·(NH),在同一平面上通过范德华力作用耦合在一起及互绕,极限偏向状态就如一个十字形态,并在周边空间形成次生以太旋涡,及相应的振动力场与流动力场。

——>胸腺嘧啶(T)

胸腺嘧啶,化学分子式为C5H6N2O2,碱基代码为T。

以太旋涡理论下,其胸腺嘧啶的化学结构式为(C·OH)2·(CH·H)·(C·NH)2,即先二个O与二个H耦合成为二个(OH),二个N与二个H耦合成为二个(NH),及一个C与二个H耦合成为一个(CH)·H;再二个C与二个(OH)耦合成为二个C·(OH),及二个C与二个(NH)耦合成为二个C·(NH);再后二个C·(OH)与二个C·(NH)耦合成(C·OH)2·(C·NH)2;最后是一个(C·OH)2·(C·NH)2与一个(CH)·H耦合成(C·OH)2·(CH·H)·(C·NH)2。

在胸腺嘧啶分子以太旋涡中,四个离子以太旋涡,即两个(C·OH)与两个(C·NH),在同一平面上通过范德华力作用耦合在一起及互绕,(CH·H)在平面的中心,与(C·OH)2·(C·NH)2以同旋异极吸附作用耦合在一起,极限偏向状态就如一个十字形态,并在周边空间形成次生以太旋涡,及相应的流场与振动力场。

由于(CH)·H耦合结构中有两个氢原子在碳原子以太旋涡的涡流轨道上,让(CH)次生以太旋涡的活跃性进一步提高,也即振动力场强化,并且削弱了(CH)次生以太旋涡的流动力场,从而易受外界力场作用而让(CH·H)脱离(C·OH)2·(CH·H)·(C·NH)2耦合结构,化为游离态的(CH)·H与(C·OH)2·(C·NH)2。(CH)·H之中的远碳原子核的氢原子以太旋涡受碳原子的流动力场吸引作用低,也容易脱离涡流轨道,导致(CH)·H易分解成(CH)与H。

(C·OH)2·(C·NH)2即尿嘧啶,可以看出胸腺嘧啶比尿嘧啶在以太旋涡涡心处多一个(CH·H),即CH2,其它结构均一致,于是相比之下胸腺嘧啶有相对较高强度的振动力场与流动力场形态,但结构稳定性相对要差。反之尿嘧啶的结构稳定性要高些,可以在更高环境振动力场中保持原有形态。这也是胸腺嘧啶可以转换为尿嘧啶的物质作用根源,会在后续基因原理章节继续论述两种嘧啶的转换原理。

2、核糖分子

核糖分子是一种单糖,分子式为C5H10O5,是核糖核酸(RNA)的重要组成部分。核糖分子被认为是一种五碳糖,分子中存在环状结构。

以太旋涡理论下,核糖分子的结构式是(CH·OH)5,即五个C与五个H先分别耦合成五个(CH),及五个O与五个H先耦合成五个(OH),再每个(CH)与(OH)耦合成(CH)·(OH),最后五个(CH)·(OH)耦合成(CH·OH)5。

核糖分子是五个(CH·OH)在同一平面上通过范德华力作用耦合在一起及互绕的次生以太旋涡结构,极限偏向状态也如一个五角星形态,并对外界表达出相应次生以太旋涡的振动力场与流动力场形态。

如此多OH、多CH·OH环形结构与运动形态,让核糖次生分子以太旋涡的周边空间存在强流动力场,表达为很强的收敛吸附作用,在宏观上的显象就是有粘性,其它象含糖成分高的各类碳水化合物的水合物,都有很强的粘性,如蜂蜜、米饭、蔗糖浆,等等,都是由于这多OH环形结构强化了流动力场所致。

可以发现核糖分子以太旋涡的空间结构与水合磷酸分子以太旋涡的空间结构有极大的相似性。只是由于核糖中心位置没有大原子量的磷原子结构来强化OH的流动力场,其流动力场强度相对水合磷酸分子以太旋涡的流动力场强度要弱,但其流动力场相对本身的振动力场要强。其以太旋涡空间的振动力场与流动力场对比是:

流动力场 >> 振动力场

同时,由于碳原子以太旋涡的活跃性属于“连珠频率低,偏向小,角动量高”,其以太涡流有极高的平稳性,导致纯粹碳原子之间的耦合结构如金刚石、石墨、富勒烯等的内部结构都有很高的结合强度,而与氢原子以太旋涡耦合成(CH)之后,氢原子成为其“远核外大电子”,强化了碳原子的涡流偏向性,也即提高了碳原子的活跃性,成为“连珠频率低,偏向中,角动量高”的次生以太旋涡,由此也弱化了碳原子之间共价键与范德华力的联结作用,因此其耦合成的核糖形态,即相对氮氧原子等高活跃性原子以太旋涡有比较平稳的空间以太涡流形态,又有原碳原子之间共价键与范德华力弱化后的结合作用特征,让核糖及其它糖类分子可以成为生命组织重要构架成分之一。

1、水合磷酸分子

核糖核苷酸分子的化学式,是由一分子磷酸、一分子核糖(一种五碳糖)、一分子含氮碱基构成。核糖核苷酸分成腺嘌呤核糖核苷酸、鸟嘌呤核糖核苷酸、胞嘧啶核糖核苷酸、尿嘧啶核糖核苷酸。核糖核苷酸分子是生命遗传物质RNA的主要成分,一般存在于细胞质中,包括了核糖体中的tRNA和rRNA、线粒体和叶绿体中的遗传物质RNA、细胞质和细胞核中的mRNA。

现代生命科学之所以对基因遗传的机制不清楚,就在于对这三种分子形态的结构认识不足所致,根源在于错误的经典原子结构模型。这里用原子以太旋涡模型粗略解析这三种分子的波流一体形态,以让人们对核糖核苷酸分子结构有一个全新的认识。

1、水合磷酸分子

核糖核苷酸,主体是磷酸分子与五碳核糖分子,尤以磷酸分子为重。磷酸分子的核心是磷元素原子以太旋涡,在元素周期表中原子量排在15,比碳氮氧三种元素的原子量6、7、8大一倍左右,可以判定其振动力场与流动力场的作用半径比碳氮氧三种元素原子以太旋涡也要大上一倍以上。如此相对大原子量,让磷酸分子以太旋涡在核糖核苷酸分子中起主导作用,并让核糖核苷酸分子构成的高分子运动形态展现磷元素原子以太旋涡的特征。

磷酸分子的经典化学分子式是H3PO4,具有酸的通性,是三元弱酸。以太旋涡理论里,磷酸分子是以磷元素原子以太旋涡P为核心,OH、O为周边环绕的次生以太旋涡结构形态,分子式为(PO)·(OH)3,即先一个P与一个O通过同旋异极吸附作用耦合成(PO),及三个O与三个H耦合成(OH),再三个(OH)与一个(PO)通过异旋同极吸附作用耦合在一起,整体构成磷酸分子次生以太旋涡。

细胞器的活动场所主体是水溶液环境,虽然磷酸分子的分子式是H3PO4,但由于处在水溶液环境中,于是磷原子以太旋涡的强振动力场,会导致水分子H2O分解成游离态的H+与HO-两种离子以太旋涡,并分别被磷酸分子上的磷原子与氧原子捕获而形成耦合态结构,如此结构就是水合磷酸分子H3PO4·H2O,又简写作H5PO5。也即磷酸处于水溶液中与处于浓缩态及结晶态是不一样的以太旋涡结构形态,而非人们通常以为的有水无水环境下都还是原分子式结构。

细胞中的磷酸分子是以水合物形式存在,因此这里专门介绍H5PO5的以太旋涡下耦合结构模式。水合磷酸分子H5PO5的详细分子式是P·(OH)5,是磷酸分子(PO)·(OH)3在水合过程中,(PO)离子上的O原子以太旋涡捕获水分子解体时的H+形成(OH),因其振动力场提高,(PO)中的O原子与P原子的耦合结构被破坏,即共价键断开而相互远离,同时磷原子以太旋涡的流动力场捕获OH-,共形成两个(OH),与原来三个(OH)一起,共五个(OH)通过异旋同极吸附作用,与P耦合成P·(OH)5。

整个水合磷酸分子P·(OH)5的次生以太旋涡结构中,五个(OH)以P原子为中心,边自转边围绕P原子以太旋涡的涡流轨道作公转运动,极限偏向状态就如一个五角星形态,并对外界表达出相应次生以太旋涡的振动力场与流动力场形态。

水合磷酸分子以太旋涡存在五个(OH)离子以太旋涡,(OH)虽是碱基,但由于磷原子以太旋涡的牵引,表达出与羟基相类似的酸性现象,是为磷酸。同时(OH)能强化流动力场,五个(OH)流动力场与磷原子以太旋涡流动力场叠加强化后,让水合磷酸分子在细胞的中小分子群里表达出最强的流动力场,其形成的RNA分子长链与大分子团,在细胞中有最广作用范围与最强流动力场,是遗传物质得以非常稳定的核心物质作用基础。其振动力场与流动力场的对比是:

流动力场 >> 振动力场

这种水合磷酸分子的强振动力场与超强流动力场属性判定,可以通过磷酸H3PO4在宏观上的化学属性表现来验证的。象磷酸归属弱酸,一说是中强酸,表达为酸性,是具有强振动力场的体现。磷酸在浓稠时有很强的粘性,不易挥发,不易分解,几乎没有氧化性,都是有很强流动力场的体现,在于强流动力场产生稳定收敛结构,易形成长链磷酸分子耦合结构而让化学性质更稳定。所有具有粘性的宏观流体物质,在微观层次都是强流动力场在产生收敛吸引作用而显象。浓磷酸在空气中容易潮解,说明易形成水合结构,等等。

应磷原子以太旋涡自身的电子连珠现象,—OH的偏向作用,水合磷酸分子以太旋涡除了存在超强流动力场,也存在特定的振动波发散形态与之相应的振动力场,如此是为水合磷酸分子以太旋涡的波流一体形态,让细胞中的水合磷酸分子以太旋涡表达出相应的化学属性,会在后面章节继续介绍这种水合磷酸分子的长链耦合形态,即RNA与DNA。

核糖核苷酸分子以太旋涡

核糖核苷酸分子的化学式,是由一分子磷酸、一分子核糖(一种五碳糖)、一分子含氮碱基构成。核糖核苷酸分成腺嘌呤核糖核苷酸、鸟嘌呤核糖核苷酸、胞嘧啶核糖核苷酸、尿嘧啶核糖核苷酸。核糖核苷酸分子是生命遗传物质RNA的主要成分,一般存在于细胞质中,包括了核糖体中的tRNA和rRNA、线粒体和叶绿体中的遗传物质RNA、细胞质和细胞核中的mRNA。

现代生命科学之所以对基因遗传的机制不清楚,就在于对这三种分子形态的结构认识不足所致,根源在于错误的经典原子结构模型。这里用原子以太旋涡模型粗略解析这三种分子的波流一体形态,以让人们对核糖核苷酸分子结构有一个全新的认识。

1、水合磷酸分子

核糖核苷酸,主体是磷酸分子与五碳核糖分子,尤以磷酸分子为重。磷酸分子的核心是磷元素原子以太旋涡,在元素周期表中原子量排在15,比碳氮氧三种元素的原子量6、7、8大一倍左右,可以判定其振动力场与流动力场的作用半径比碳氮氧三种元素原子以太旋涡也要大上一倍以上。如此相对大原子量,让磷酸分子以太旋涡在核糖核苷酸分子中起主导作用,并让核糖核苷酸分子构成的高分子运动形态展现磷元素原子以太旋涡的特征。

磷酸分子的经典化学分子式是H3PO4,具有酸的通性,是三元弱酸。以太旋涡理论里,磷酸分子是以磷元素原子以太旋涡P为核心,OH、O为周边环绕的次生以太旋涡结构形态,分子式为(PO)·(OH)3,即先一个P与一个O通过同旋异极吸附作用耦合成(PO),及三个O与三个H耦合成(OH),再三个(OH)与一个(PO)通过异旋同极吸附作用耦合在一起,整体构成磷酸分子次生以太旋涡。

细胞器的活动场所主体是水溶液环境,虽然磷酸分子的分子式是H3PO4,但由于处在水溶液环境中,于是磷原子以太旋涡的强振动力场,会导致水分子H2O分解成游离态的H+与HO-两种离子以太旋涡,并分别被磷酸分子上的磷原子与氧原子捕获而形成耦合态结构,如此结构就是水合磷酸分子H3PO4·H2O,又简写作H5PO5。也即磷酸处于水溶液中与处于浓缩态及结晶态是不一样的以太旋涡结构形态,而非人们通常以为的有水无水环境下都还是原分子式结构。

细胞中的磷酸分子是以水合物形式存在,因此这里专门介绍H5PO5的以太旋涡下耦合结构模式。水合磷酸分子H5PO5的详细分子式是P·(OH)5,是磷酸分子(PO)·(OH)3在水合过程中,(PO)离子上的O原子以太旋涡捕获水分子解体时的H+形成(OH),因其振动力场提高,(PO)中的O原子与P原子的耦合结构被破坏,即共价键断开而相互远离,同时磷原子以太旋涡的流动力场捕获OH-,共形成两个(OH),与原来三个(OH)一起,共五个(OH)通过异旋同极吸附作用,与P耦合成P·(OH)5。

整个水合磷酸分子P·(OH)5的次生以太旋涡结构中,五个(OH)以P原子为中心,边自转边围绕P原子以太旋涡的涡流轨道作公转运动,极限偏向状态就如一个五角星形态,并对外界表达出相应次生以太旋涡的振动力场与流动力场形态。

水合磷酸分子以太旋涡存在五个(OH)离子以太旋涡,(OH)虽是碱基,但由于磷原子以太旋涡的牵引,表达出与羟基相类似的酸性现象,是为磷酸。同时(OH)能强化流动力场,五个(OH)流动力场与磷原子以太旋涡流动力场叠加强化后,让水合磷酸分子在细胞的中小分子群里表达出最强的流动力场,其形成的RNA分子长链与大分子团,在细胞中有最广作用范围与最强流动力场,是遗传物质得以非常稳定的核心物质作用基础。其振动力场与流动力场的对比是:

流动力场 >> 振动力场

这种水合磷酸分子的强振动力场与超强流动力场属性判定,可以通过磷酸H3PO4在宏观上的化学属性表现来验证的。象磷酸归属弱酸,一说是中强酸,表达为酸性,是具有强振动力场的体现。磷酸在浓稠时有很强的粘性,不易挥发,不易分解,几乎没有氧化性,都是有很强流动力场的体现,在于强流动力场产生稳定收敛结构,易形成长链磷酸分子耦合结构而让化学性质更稳定。所有具有粘性的宏观流体物质,在微观层次都是强流动力场在产生收敛吸引作用而显象。浓磷酸在空气中容易潮解,说明易形成水合结构,等等。

应磷原子以太旋涡自身的电子连珠现象,—OH的偏向作用,水合磷酸分子以太旋涡除了存在超强流动力场,也存在特定的振动波发散形态与之相应的振动力场,如此是为水合磷酸分子以太旋涡的波流一体形态,让细胞中的水合磷酸分子以太旋涡表达出相应的化学属性,会在后面章节继续介绍这种水合磷酸分子的长链耦合形态,即RNA与DNA。

2、核糖分子

核糖分子是一种单糖,分子式为C5H10O5,是核糖核酸(RNA)的重要组成部分。核糖分子被认为是一种五碳糖,分子中存在环状结构。

以太旋涡理论下,核糖分子的结构式是(CH·OH)5,即五个C与五个H先分别耦合成五个(CH),及五个O与五个H先耦合成五个(OH),再每个(CH)与(OH)耦合成(CH)·(OH),最后五个(CH)·(OH)耦合成(CH·OH)5。

核糖分子是五个(CH·OH)在同一平面上通过范德华力作用耦合在一起及互绕的次生以太旋涡结构,极限偏向状态也如一个五角星形态,并对外界表达出相应次生以太旋涡的振动力场与流动力场形态。

如此多OH、多CH·OH环形结构与运动形态,让核糖次生分子以太旋涡的周边空间存在强流动力场,表达为很强的收敛吸附作用,在宏观上的显象就是有粘性,其它象含糖成分高的各类碳水化合物的水合物,都有很强的粘性,如蜂蜜、米饭、蔗糖浆,等等,都是由于这多OH环形结构强化了流动力场所致。

可以发现核糖分子以太旋涡的空间结构与水合磷酸分子以太旋涡的空间结构有极大的相似性。只是由于核糖中心位置没有大原子量的磷原子结构来强化OH的流动力场,其流动力场强度相对水合磷酸分子以太旋涡的流动力场强度要弱,但其流动力场相对本身的振动力场要强。其以太旋涡空间的振动力场与流动力场对比是:

流动力场 >> 振动力场

同时,由于碳原子以太旋涡的活跃性属于“连珠频率低,偏向小,角动量高”,其以太涡流有极高的平稳性,导致纯粹碳原子之间的耦合结构如金刚石、石墨、富勒烯等的内部结构都有很高的结合强度,而与氢原子以太旋涡耦合成(CH)之后,氢原子成为其“远核外大电子”,强化了碳原子的涡流偏向性,也即提高了碳原子的活跃性,成为“连珠频率低,偏向中,角动量高”的次生以太旋涡,由此也弱化了碳原子之间共价键与范德华力的联结作用,因此其耦合成的核糖形态,即相对氮氧原子等高活跃性原子以太旋涡有比较平稳的空间以太涡流形态,又有原碳原子之间共价键与范德华力弱化后的结合作用特征,让核糖及其它糖类分子可以成为生命组织重要构架成分之一。

3、五种碱基

核糖核酸RNA与脱氧核糖核酸DNA,其组成单元分别是核糖核苷酸分子与脱氧核糖核苷酸分子,两种分子各有四种碱基组合形态,共五种碱基类型。所带的不同碱基分别是核糖核苷酸分子由四种碱基,即腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、尿嘧啶(U)构成的,脱氧核糖核苷酸分子则由四种碱基,即腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)构成的。这里分别就这五种碱基作一个以太旋涡理论下的模型结构介绍。

——>腺嘌呤(A)

腺嘌呤,就是维生素B4,又称6-氨基嘌呤,化学分子式为C5H5N5,碱基代码为A。

以太旋涡理论下,腺嘌呤的化学结构式为(C·NH)5,即先五个N与五个H耦合成为五个—(NH),再五个C与五个(NH)耦合成五个C·(NH),最后五个C·(NH)耦合成为(C·NH)5。

在腺嘌呤分子以太旋涡中,五个C·(NH)以在同一平面上通过范德华力作用耦合在一起及互绕,极限偏向状态就如一个五角星形态,并在周边空间形成次生以太旋涡,及相应的流场与振动力场。

也可以看出腺嘌呤分子以太旋涡与核糖分子以太旋涡,有几近一样的空间结构形态与运动模式。又由于核糖分子中的碳原子比腺嘌呤分子中的碳原子多一个氢原子,导致核糖分子以太旋涡半径与力场范围比腺嘌呤分子以太旋涡半径与力场范围要来得大一些,但分子结构的稳定性则要差一些。

——>鸟嘌呤(G)

鸟嘌呤的化学分子式为C5H5N5O,碱基代码为G。

以太旋涡理论下,鸟嘌呤的化学结构式为(C·NH)5·O,即先五个N与五个H耦合成为五个(NH),再五个C与五个(NH)耦合成五个C·(NH),及后五个C·(NH)耦合成(C·NH)5,最后(C·NH)5与一个O耦合成(C·NH)5·O。

在鸟嘌呤分子以太旋涡中,五个C·(NH)以O为核心在同一平面上通过范德华力作用耦合在一起及互绕,极限偏向状态就如一个五角星形态,并在周边空间形成次生以太旋涡,及相应的流场与振动力场。

可以看出鸟嘌呤比腺嘌呤在以太旋涡涡心处多一个O原子以太旋涡,其它结构均一致,因此其振动力场与流动力场形态都要强于腺嘌呤。

——>胞嘧啶(C)

胞嘧啶,学名为4-氨基-2-羰基嘧啶,化学分子式为C4H5N3O,碱基代码为C。

以太旋涡理论下,胞嘧啶的化学结构式为(C·NH)3·O·CH2,即先三个N与三个H耦合成三个(NH),一个C与二个H耦合成为一个(CH2);再三个C与三个(NH)耦合成为三个C·(NH),及一个(CH2)与一个O耦合成为一个(O·CH2);最后三个C·(NH)与一个(O·CH2)耦合成为(C·NH)3·O·CH2。

在胞嘧啶分子以太旋涡中,一个(O·CH2)与三个C·(NH),在同一平面上通过范德华力作用耦合在一起及互绕,其中(O·CH2)中的O与C通过同旋异极吸附作用耦合在一起,极限偏向状态就如一个正三角星形态,并在周边空间形成次生以太旋涡,及相应的振动力场与流动力场。

——>尿嘧啶(U)

尿嘧啶 ,化学分子式为C4H4N2O2,碱基代码为U,是RNA特有的碱基。

以太旋涡理论下,尿嘧啶的化学结构式为(C·OH)2·(C·NH)2,即先二个O与二个H耦合成为二个(OH),及二个N与二个H耦合成为二个(NH);再二个C与二个OH耦合成为二个C·(OH),及二个C与二个—NH耦合成二个C·(NH);最后是二个C·(OH)与二个C·(NH)耦合成(CH·OH)2·(C·NH)2。

在尿嘧啶分子以太旋涡中,四个离子以太旋涡,即两个C·(OH)与两个C·(NH),在同一平面上通过范德华力作用耦合在一起及互绕,极限偏向状态就如一个十字形态,并在周边空间形成次生以太旋涡,及相应的振动力场与流动力场。

——>胸腺嘧啶(T)

胸腺嘧啶,化学分子式为C5H6N2O2,碱基代码为T。

以太旋涡理论下,其胸腺嘧啶的化学结构式为(C·OH)2·(CH·H)·(C·NH)2,即先二个O与二个H耦合成为二个(OH),二个N与二个H耦合成为二个(NH),及一个C与二个H耦合成为一个(CH)·H;再二个C与二个(OH)耦合成为二个C·(OH),及二个C与二个(NH)耦合成为二个C·(NH);再后二个C·(OH)与二个C·(NH)耦合成(C·OH)2·(C·NH)2;最后是一个(C·OH)2·(C·NH)2与一个(CH)·H耦合成(C·OH)2·(CH·H)·(C·NH)2。

在胸腺嘧啶分子以太旋涡中,四个离子以太旋涡,即两个(C·OH)与两个(C·NH),在同一平面上通过范德华力作用耦合在一起及互绕,(CH·H)在平面的中心,与(C·OH)2·(C·NH)2以同旋异极吸附作用耦合在一起,极限偏向状态就如一个十字形态,并在周边空间形成次生以太旋涡,及相应的流场与振动力场。

由于(CH)·H耦合结构中有两个氢原子在碳原子以太旋涡的涡流轨道上,让(CH)次生以太旋涡的活跃性进一步提高,也即振动力场强化,并且削弱了(CH)次生以太旋涡的流动力场,从而易受外界力场作用而让(CH·H)脱离(C·OH)2·(CH·H)·(C·NH)2耦合结构,化为游离态的(CH)·H与(C·OH)2·(C·NH)2。(CH)·H之中的远碳原子核的氢原子以太旋涡受碳原子的流动力场吸引作用低,也容易脱离涡流轨道,导致(CH)·H易分解成(CH)与H。

(C·OH)2·(C·NH)2即尿嘧啶,可以看出胸腺嘧啶比尿嘧啶在以太旋涡涡心处多一个(CH·H),即CH2,其它结构均一致,于是相比之下胸腺嘧啶有相对较高强度的振动力场与流动力场形态,但结构稳定性相对要差。反之尿嘧啶的结构稳定性要高些,可以在更高环境振动力场中保持原有形态。这也是胸腺嘧啶可以转换为尿嘧啶的物质作用根源,会在后续基因原理章节继续论述两种嘧啶的转换原理。

4、三分子耦合结构

水合磷酸分子、核糖分子、碱基分子通过三种分子之间的耦合作用形成整体的核糖核苷酸分子结构。三种分子之间的耦合作用分两种组合模式:

一是同旋异极吸附作用组合,即水合磷酸分子、核糖分子、碱基分子各自的主涡轴重合,涡心在一条直线上,自转方向相同,次生以太旋涡的黄道面相互平行,如宝塔般层层累加,是为水合磷酸—核糖—碱基串连结构下的核糖核苷酸分子。

二是同旋异极吸附作用+范德华力组合,即核糖分子、碱基分子各自的涡轴重合,涡心在一条直线上,自转方向相同,两者的次生以太旋涡的黄道面相互平行,但两者与水合磷酸分子的涡轴相互垂直,再通过范德华力吸引作用,与水合磷酸分子耦合在一起,是为水合磷酸+核糖—碱基的串—并连结构下的核糖核苷酸分子。

这两种耦合模式结构下的核糖核苷酸分子,通过内部的水合磷酸分子间的同旋异极吸附作用,可以继续耦合形成单链型RNA长链、分叉型RNA长链,等等。串连结构下的糖核苷酸分子一般处在RNA分子的中间部分,分子数量相对较多,串—并连结构的核糖核苷酸分子一般在RNA分子的末端,分子相对数量较少。

核糖核苷酸分子的振动力场与流动力场,分别是水合磷酸分子、核糖分子、碱基分子这三种分子的振动力场及流动力场的叠加状态,因此其振动力场与流动力场,都得到很大的强化。两种力场的对比是:

流动力场>>振动力场

由耦合结构的作用机制可知,水合磷酸分子自身,核糖分子自身,碱基分子自身,均会形成相同分子之间的耦合结构,这分别就是长链水合磷酸分子,长链核糖分子,碱基配对结构,会在后面继续描绘。

4、极性蛋白质分子

应包含各氨基酸的酸碱性数量不同,及各酸碱性氨基酸在蛋白质颗粒空间的疏密分布不同,导致蛋白质局部空间的振动力场与流动力场分布不均,从而让蛋白质分子次生以太旋涡表现出极性,这与极性分子以太旋涡的原理一样,只是构架空间要广大些,参与的微观以太旋涡要多些。在蛋白质分子空间里,由于氨基酸种类不一,力场不同,导致绝对均衡对称的氨基酸分子分布形态下的蛋白质分子结构是不存在的,于是可知所有蛋白质分子都是极性分子。其以太波流一体状态下的力场形态为:

振动力场、流动力场各自不对称

以一个球形蛋白质分子为例,设分子一半组成是强酸性氨基酸分子,分布在左半边,一半组成是强碱性氨基酸分子,分布在右半边,其振动力场与流动力场整体对外表现为中性,是为中性蛋白质分子。但在局部区域,即接近左半边顶点或右半边顶点的局部空间里,其振动力场与流动力场分别占主导地位。而接近左右半边交接处的局部空间里,其振动力场与流动力场又是相互中和。

如此结构的蛋白质分子,会应外界振动力场与流动力场的作用,而出现快速轴纠正反应。比如这蛋白质分子若出现在一个强振动力场环境空间里,蛋白质分子的振动力场与环境振动力场相互排斥,左半边会被推至背离环境振动源的方向,而右半边会被吸引至靠近环境振动源的方向,表达为轴纠正。反之这蛋白质分子若出现在一个强流动力场环境空间里,蛋白质分子的流动力场与环境流动力场相互排斥,右半边会被推至远离环境振动源的方向,而左半边会被吸引至接近环境振动源的方向,也表达为轴纠正。两种轴纠正都是极性蛋白质分子对环境变化作出的动作反应。即:

极性蛋白质分子会有轴纠正运动

若这个蛋白质分子处于氲氤状态下的以太空间里,由于左半边的振动力场以波的形式产生作用,会在左半边外围空间产生正以太压力,正以太压力会推动蛋白质分子向振动力场的反方向位移,也即右移动。同时,右半边的流动力场以流的形式产生作用,会在右半边外围空间产生负以太压力,负以太压力会牵引此蛋白质分子向流动力场的反方向位移,也即向右移动。两种力场都对此蛋白质分子产生向右的作用力,这蛋白质分子就会向右方向定向位移。自然,由于蛋白分子的振动力场及流动力场同以太空间相互作用的效果是很弱的,这种位移速度也是非常缓慢,但又是存在的。不同极性的蛋白质分子的运动形态也是千差万别的。这是极性蛋白质分子能够自主运动的力场作用根源,而非当下科学界对蛋白质分子的认识只是随机分布在空间的颗粒形态,可以任由环境变化摆布与安排。即:

极性蛋白质分子能够自主定向运动

极性蛋白质分子即能进行轴纠正运动,又能自主定向运动,因此对环境力场变化能随时随地产生空间位置变动与自身状态调整,这就是蛋白质分子的应激反应。

在这球形蛋白质分子内部空间,—CO—OH与—CH—NH2也是对应地处于分布疏密不均的状态,与外部的基键分布刚好相反,导致内部空间的振动力场与流场也是有单一指向性,是从—CH—NH2指向—CO—OH。而—CH—NH2的振动力场有向外扩张的趋势,—CO—O的流动力场有向内收敛的趋势,内部振动波从—CH—NH2指向—CO—OH并形成场涡,再牵引以太形成次生以太旋涡与涡管,涡轴是两力场的中心连接线。于是两个力场分别让—CO—OH聚集的区域向内收敛,又从涡管处向外扩张;让—CH—NH2聚集的区域向外膨胀,又从涡管处向内凹陷,形成—CH—NH2面钝,—CO—OH面尖的桃心形状的空间结构。这就是极性蛋白质分子空间形变的内在力场作用根源。其它更复杂的多氨基酸结合成的蛋白质分子,会也对应的更复杂的空间结构,但形变的作用原理都是一样的。

各酸碱性氨基酸应数量与种类不同,其不同排列组合形成的蛋白质分子可以有无穷多种,于是蛋白质分子的极性形态也是多种多样的。如有强酸—弱酸型·极性蛋白质分子,有强酸—中性型·极性蛋白质分子,有强酸—弱碱型·极性蛋白质分子,有强酸—强碱型·极性蛋白质分子;又有弱酸—中性型·极性蛋白质分子,弱碱—中性型·极性蛋白质分子,弱碱—强碱型·极性蛋白质分子,等等不一而足。又如有单涡轴极性蛋白质分子,有多涡轴极性蛋白质分子,等等。这些蛋白质分子的振动力场与流动力场在分子周边空间分布不均及强弱不同,并有各自特征,导致蛋白质分子对外界环境的不同振动力场与流动力场产生相应作用,表达为特定的功能。而所有功能,都是通过振动力场与流动力场产生作用的。

3、碱型蛋白质分子

一类蛋白质分子,若其组成的氨基酸主体是由碱性氨基酸分子构成,那么众多碱性氨基酸分子的流动力场相互叠加强化,会让这类蛋白质分子对外作用表达为碱性,这就是碱型蛋白质分子。在生命细胞的化学反应中,与无机化合物中的碱有相近的功能,主体起到合成与收敛作用。其以太波流一体状态下的力场对比为:

振动力场 < 流动力场

应碱性氨基酸分子所占比例不同,大比例强碱性氨基酸分子对应的是强碱型蛋白质分子,大比例弱碱性氨基酸分子对应的是弱碱型蛋白质分子。同样,其它应氨基酸分子的强弱碱性不同与数量比例不同,有相应的强弱碱性梯度分布的碱型蛋白质分子。

碱型蛋白质分子,由于其流动力场大于振动力场,可以有很强的吸附、收敛作用。对于大体积的强碱型蛋白质分子更是让这种能力达到极致,是染色体、染色质、核仁、叶绿体上的蛋白质的主体形式。弱碱型蛋白质分子可以吸附并固定其它营养分子,是与糖类、脂类、细胞核膜转运蛋白等与合成相关组织蛋白的主体形式。

碱型蛋白质分子,其外部空间周边空间存在强流动力场,其内部空间除了存在氨基酸—R基团之间相互耦合吸引之外,其—CO—OH也大多分布在外围,相互之间产生范德华力吸引作用,进而强化这种耦合吸引作用,让蛋白质分子空间结构得以稳定,不会被内部的振动力场分解与破坏。

碱型蛋白质分子的整体强流动力场向内部收敛,会对分子团上的个体氨基酸的—CO—OH产生流动力场之间的排斥作用,将其推向远方,如此作用结果让蛋白质分子上大多氨基酸分子的—CO—OH都朝外排列并指向远方,而—CH—NH2则都朝内排列并指向中心。—CO—OH在流动力场作用下除了指向远方之外,还让氧原子以太旋涡的黄道面涡流产生如伞面外凸偏向。对于一个球形碱型蛋白质分子来说,如此—CO—OH指向分布,其表面会看上去会有一个个单突点的结构形态,就如将许多小段吸管插满在一个大泥球上。

而—CH—NH2朝内排列指向中心,其振动力场之间相互干涉排斥,在蛋白质内部空间形成一个以振动力场为作用方式的大场涡,即大场涡形成大以太旋涡,这以太旋涡偏向性与流转速度都很高,对内表达出很高的活跃性,犹如存在一个强振动力场。同时让蛋白质分子有分解与膨胀的趋势,在空间上蛋白质分子内部的各个氨基酸分子有更松散的结合程度,如此也导致碱型蛋白质分子的体积相对要大。

如此蛋白质分子按酸碱属性,可分五种形态:强酸型蛋白质分子,弱酸型蛋白质分子,中性蛋白质分子,弱碱型蛋白质分子,强碱型蛋白质分子。中性蛋白质分子又可分为强酸—强碱型中性蛋白质分子,弱酸—弱碱型中性蛋白质分子,纯中性蛋白质分子。这五种主体形态及三种细分形态是生命体蛋白质分子最重要的分类形态,由此人们不再被种类繁多、结构复杂、数量万千、大小不定的蛋白质分子所迷惑。会在后面章节继续论述以上几种形态的蛋白质分子的各种以太旋涡理论解析下的具体功能。

2、中性蛋白质分子

一类蛋白质分子,若其组成的氨基酸主体是由中性氨基酸分子构成,或虽由酸性氨基酸与碱性氨基酸构成,但酸性氨基酸与碱性氨基酸数量相当,相互的振动力场、流场能分别抵消,那么众多中性氨基酸分子为主体的蛋白质分子的振动力场与流动力场相互中和,会让这类蛋白质分子对外作用表达为中性。在生命细胞的化学反应中,这类蛋白质的功能与无机化合物中的水有相似的中和属性,主体起到构架与组织作用。其以太波流一体状态下的力场对比为:

振动力场 = 流动力场

中性蛋白质分子,由于振动力场与流动力场相当,在细胞中可被其它细胞器或组织结构所固定而不应自身活性原因脱离,故可以构架出稳定的细胞器的膜、管、腔等组织结构。不同体积大小的中性蛋白质分子对应不同大小的细胞器与组织结构。一般来说,大细胞器对应大体积中性蛋白质分子,小细胞器对应小体积中性蛋白质分子。由于中性并不是一个绝对概念,即不是测得PH=7,或振动力场刚好与流动力场完全抵消,而是有个偏差范围,偏差两端即为微酸与微碱,因此微酸型或微碱型蛋白质分子,也都可归于中性蛋白质分子一类。

中性蛋白质分子,除了由中性氨基酸构成的纯中性蛋白质分子之外,应其构成的酸性氨基酸与碱性氨基酸的强弱不同,还有强酸—强碱型中性蛋白分子,弱酸—弱碱型中性蛋白质分子,共三种模式。这三种中性模式,就如无机分子中的纯水中性,氯化钠溶液中性,碳酸钙溶液中性类似,虽然各呈中性,但其各成分不同,其分子以太旋涡会对周边空间产生不同的波动形态,让以太处于不同强度与频率的氲氤状态,在宏观上会有不同的味道感官,同样,即便都是中性蛋白质分子,也是各自有不同的振动力场与流场的,需具体蛋白质分子具体考查。

特别是对于由强酸性氨基酸与强碱性氨基酸因数量相当、两种力场抵消所致的中性蛋白质分子,虽整体上表现为中性,但在这类蛋白质分子的局部区域仍保留强酸性与强碱性氨基酸的力场作用特征,会因外界其它分子的耦合作用,时而产生偏酸属性,时而产生偏碱属性的力场作用,并有对应的排斥或吸引现象,是膜运输蛋白质分子、免疫蛋白分子的主体成分。

在中性蛋白质分子内部空间,—CH—NH2与—CO—OH都有朝内排列并指向中心的,各自振动力场与流动力场之间相互干涉排斥并中和,在蛋白质内部空间形成多个涡轴不定,类似湍流形态分布的小场涡,同时让蛋白质分子空间有不稳定的趋势,会被外部其它分子以太旋涡的振动力场或流动力场所牵引而随时改变方位与轴自由度,及整体颗粒的定向位移。

1、酸型蛋白质分子

一类蛋白质分子,若其组成的氨基酸主体是由酸性氨基酸分子构成,那么众多酸性氨基酸分子的振动力场相互叠加强化,会让这类蛋白质分子对外作用表达为酸性,是为酸型蛋白质分子。在生命细胞的化学反应中,与无机化合物中的酸有相近的功能,主体起到分解与破坏作用。其以太波流一体状态下的力场对比为:

振动力场 > 流动力场

应酸性氨基酸分子所占比例不同,大比例强酸性氨基酸分子对应的是强酸型蛋白质分子,大比例弱酸性氨基酸分子对应的是弱酸型蛋白质分子。其它应氨基酸分子的强弱酸性不同与数量比例不同,有相应的强弱酸性梯度分布的酸型蛋白质分子。

强酸型蛋白质分子,其振动力场有最强的分解与破坏能力,对于大体积的强酸型蛋白质分子更是让这种能力达到极致,是催化酶的主体形式。会在后面章节专门介绍酶的催化作用的另类机制。弱酸型蛋白质分子可以活化细胞运动,是肌肉蛋白、血红蛋白等与运动相关组织蛋白的主体形式。

酸型蛋白质分子,其外部周边空间存在强振动力场,其内部空间除了存在氨基酸—R基团之间相互耦合吸引之外,其—CO—OH也大多集中在中心,相互之间产生范德华力吸引作用,进而强化这种耦合吸引作用,让蛋白质分子空间结构得以稳定,不会首先被自身的强振动力场分解与破坏。

酸型蛋白质分子的整体强振动力场向四周扩散,会对分子团上的个体氨基酸的—CH—NH2产生振动力场之间的排斥作用,使其指向远方,如此作用结果让蛋白质分子上大多氨基酸分子的—CH—NH2都朝外排列并指向远方,而—CO—OH则都朝内排列并指向中心。且—NH2在振动力场作用下除了指向远方之外,还让氮原子以太旋涡的黄道面涡流产生如伞面外凹偏向,让—NH2结构中的氮、氢原子核如一个树丫分叉般的排列。对于一个球形酸型蛋白质分子来说,如此—CH—NH2指向分布及—NH2分叉结构,其表面会看上去会有一个个双突点的结构形态,就如将许多小段树丫插满在一个大泥球上。

而—CO—OH朝内排列指向中心,其流动力场之间相互干涉排斥,在蛋白质内部空间形成一个以以太流场为主体作用方式的大场涡,即大场涡形成大以太旋涡,这以太旋涡偏向性与振动强度都很低,对内表达出很低的活跃性,犹如存在一个强流动力场。同时让蛋白质分子有聚合与收敛的趋势,在空间上蛋白质分子内部的各个氨基酸分子有更紧密的结合程度,如此导致酸型蛋白质分子的体积相对要小。

蛋白质分子波流一体

蛋白质分子是一种复杂的有机化合物,氨基酸是其组成的基本单位,是生命与细胞活动的重要组成部分。蛋白质种类成千上万,其复杂形态与精微结构,更是让科学界对其个体认识可谓捉襟见肘。由于科学界关于蛋白质分子的功能、模型结构介绍可谓汗牛充栋,这里作者同样不再赘述蛋白质分子的一般知识,只描绘蛋白质分子未被科学界所认识的以太波流一体运动与结构形态,及相关的拓展认识,同时也纠正其模型中的建立在经典错误原子模型上拓展出错误认识。

众多氨基酸分子,通过R基次生以太旋涡之间的耦合作用联结在一起成为一条长链分子,就是肽链。肽链周边空间也存在次生以太旋涡。由于以太旋涡运动会产生扭转力矩,当一条肽链独立于空间时,会让肽链产生扭曲结构与旋转运动,肽链上众多氨基酸的—CO—OH健由于流场相互作用的关系,产生范德华力而相吸并相互接近,让肽链最终产生团状结构,多条肽链耦合在一起,也是可以如此形成团状结构,这团状结构就是蛋白质分子。蛋白质分子周边空间也存在次生以太旋涡。

认识到以太存在,及振动力场与流场的作用形态,蛋白质分子的结构分类其实很简单。就如氨基酸分子以太旋涡其实是水分子以太旋涡的高阶变体,蛋白质分子,其实也只是氨基酸分子的高阶变体。

现代科学实验室发现生命体一共有22种氨基酸。众多氨基酸分子一共分三种以太波流一体形态,即酸性、中性、碱性,对应的是振动力场与流场的大小不同。应不同酸碱型或中性氨基酸的含量不同,在肽链上排位次序不同,肽链扭曲旋转后氨基酸在蛋白质空间的位置不同,组成的蛋白质分子有三种对应的形态,即酸型蛋白质分子,中性蛋白质分子,碱型蛋白质分子,及五种梯度分布下的蛋白质分子,即强酸型、弱酸型、中性、弱碱型、强碱型蛋白质分子。当然这里强酸弱酸、强碱弱碱只是蛋白质分子之间酸碱性的相对概念,不是无机物中强酸强碱这种PH值为1、2或PH值为11、12这样的强度下的说法,而是PH值范围为5-6即为强酸型,PH值范围为8-9即为强碱型,同样PH值范围为6-7是为弱酸型、PH值范围7-8是为弱碱型。这种数据是作者举例说明,具体强酸强碱或弱酸弱碱,则待科学界以后设定统一数据标准来参考。又应蛋白质分子中氨基酸数量的不同,分为大体积蛋白质分子,中体积蛋白质分子,小体积蛋白分子。这种酸碱性、体积大小相互组合,又会让相同酸碱性的蛋白质分子表达出不同的性状。这里作一一简单介绍其成因与功能。

1、酸型蛋白质分子

一类蛋白质分子,若其组成的氨基酸主体是由酸性氨基酸分子构成,那么众多酸性氨基酸分子的振动力场相互叠加强化,会让这类蛋白质分子对外作用表达为酸性,是为酸型蛋白质分子。在生命细胞的化学反应中,与无机化合物中的酸有相近的功能,主体起到分解与破坏作用。其以太波流一体状态下的力场对比为:

振动力场 > 流动力场

应酸性氨基酸分子所占比例不同,大比例强酸性氨基酸分子对应的是强酸型蛋白质分子,大比例弱酸性氨基酸分子对应的是弱酸型蛋白质分子。其它应氨基酸分子的强弱酸性不同与数量比例不同,有相应的强弱酸性梯度分布的酸型蛋白质分子。

强酸型蛋白质分子,其振动力场有最强的分解与破坏能力,对于大体积的强酸型蛋白质分子更是让这种能力达到极致,是催化酶的主体形式。会在后面章节专门介绍酶的催化作用的另类机制。弱酸型蛋白质分子可以活化细胞运动,是肌肉蛋白、血红蛋白等与运动相关组织蛋白的主体形式。

酸型蛋白质分子,其外部周边空间存在强振动力场,其内部空间除了存在氨基酸—R基团之间相互耦合吸引之外,其—CO—OH也大多集中在中心,相互之间产生范德华力吸引作用,进而强化这种耦合吸引作用,让蛋白质分子空间结构得以稳定,不会首先被自身的强振动力场分解与破坏。

酸型蛋白质分子的整体强振动力场向四周扩散,会对分子团上的个体氨基酸的—CH—NH2产生振动力场之间的排斥作用,使其指向远方,如此作用结果让蛋白质分子上大多氨基酸分子的—CH—NH2都朝外排列并指向远方,而—CO—OH则都朝内排列并指向中心。且—NH2在振动力场作用下除了指向远方之外,还让氮原子以太旋涡的黄道面涡流产生如伞面外凹偏向,让—NH2结构中的氮、氢原子核如一个树丫分叉般的排列。对于一个球形酸型蛋白质分子来说,如此—CH—NH2指向分布及—NH2分叉结构,其表面会看上去会有一个个双突点的结构形态,就如将许多小段树丫插满在一个大泥球上。

而—CO—OH朝内排列指向中心,其流动力场之间相互干涉排斥,在蛋白质内部空间形成一个以以太流场为主体作用方式的大场涡,即大场涡形成大以太旋涡,这以太旋涡偏向性与振动强度都很低,对内表达出很低的活跃性,犹如存在一个强流动力场。同时让蛋白质分子有聚合与收敛的趋势,在空间上蛋白质分子内部的各个氨基酸分子有更紧密的结合程度,如此导致酸型蛋白质分子的体积相对要小。

2、中性蛋白质分子

一类蛋白质分子,若其组成的氨基酸主体是由中性氨基酸分子构成,或虽由酸性氨基酸与碱性氨基酸构成,但酸性氨基酸与碱性氨基酸数量相当,相互的振动力场、流场能分别抵消,那么众多中性氨基酸分子为主体的蛋白质分子的振动力场与流动力场相互中和,会让这类蛋白质分子对外作用表达为中性。在生命细胞的化学反应中,这类蛋白质的功能与无机化合物中的水有相似的中和属性,主体起到构架与组织作用。其以太波流一体状态下的力场对比为:

振动力场 = 流动力场

中性蛋白质分子,由于振动力场与流动力场相当,在细胞中可被其它细胞器或组织结构所固定而不应自身活性原因脱离,故可以构架出稳定的细胞器的膜、管、腔等组织结构。不同体积大小的中性蛋白质分子对应不同大小的细胞器与组织结构。一般来说,大细胞器对应大体积中性蛋白质分子,小细胞器对应小体积中性蛋白质分子。由于中性并不是一个绝对概念,即不是测得PH=7,或振动力场刚好与流动力场完全抵消,而是有个偏差范围,偏差两端即为微酸与微碱,因此微酸型或微碱型蛋白质分子,也都可归于中性蛋白质分子一类。

中性蛋白质分子,除了由中性氨基酸构成的纯中性蛋白质分子之外,应其构成的酸性氨基酸与碱性氨基酸的强弱不同,还有强酸—强碱型中性蛋白分子,弱酸—弱碱型中性蛋白质分子,共三种模式。这三种中性模式,就如无机分子中的纯水中性,氯化钠溶液中性,碳酸钙溶液中性类似,虽然各呈中性,但其各成分不同,其分子以太旋涡会对周边空间产生不同的波动形态,让以太处于不同强度与频率的氲氤状态,在宏观上会有不同的味道感官,同样,即便都是中性蛋白质分子,也是各自有不同的振动力场与流场的,需具体蛋白质分子具体考查。

特别是对于由强酸性氨基酸与强碱性氨基酸因数量相当、两种力场抵消所致的中性蛋白质分子,虽整体上表现为中性,但在这类蛋白质分子的局部区域仍保留强酸性与强碱性氨基酸的力场作用特征,会因外界其它分子的耦合作用,时而产生偏酸属性,时而产生偏碱属性的力场作用,并有对应的排斥或吸引现象,是膜运输蛋白质分子、免疫蛋白分子的主体成分。

在中性蛋白质分子内部空间,—CH—NH2与—CO—OH都有朝内排列并指向中心的,各自振动力场与流动力场之间相互干涉排斥并中和,在蛋白质内部空间形成多个涡轴不定,类似湍流形态分布的小场涡,同时让蛋白质分子空间有不稳定的趋势,会被外部其它分子以太旋涡的振动力场或流动力场所牵引而随时改变方位与轴自由度,及整体颗粒的定向位移。

3、碱型蛋白质分子

一类蛋白质分子,若其组成的氨基酸主体是由碱性氨基酸分子构成,那么众多碱性氨基酸分子的流动力场相互叠加强化,会让这类蛋白质分子对外作用表达为碱性,这就是碱型蛋白质分子。在生命细胞的化学反应中,与无机化合物中的碱有相近的功能,主体起到合成与收敛作用。其以太波流一体状态下的力场对比为:

振动力场 < 流动力场

应碱性氨基酸分子所占比例不同,大比例强碱性氨基酸分子对应的是强碱型蛋白质分子,大比例弱碱性氨基酸分子对应的是弱碱型蛋白质分子。同样,其它应氨基酸分子的强弱碱性不同与数量比例不同,有相应的强弱碱性梯度分布的碱型蛋白质分子。

碱型蛋白质分子,由于其流动力场大于振动力场,可以有很强的吸附、收敛作用。对于大体积的强碱型蛋白质分子更是让这种能力达到极致,是染色体、染色质、核仁、叶绿体上的蛋白质的主体形式。弱碱型蛋白质分子可以吸附并固定其它营养分子,是与糖类、脂类、细胞核膜转运蛋白等与合成相关组织蛋白的主体形式。

碱型蛋白质分子,其外部周边空间存在强流动力场,其内部空间除了存在氨基酸—R基团之间相互耦合吸引之外,其—CO—OH也大多分布在外围,相互之间产生范德华力吸引作用,进而强化这种耦合吸引作用,让蛋白质分子空间结构得以稳定,不会被内部的振动力场分解与破坏。

碱型蛋白质分子的整体强流动力场向内部收敛,会对分子团上的个体氨基酸的—CO—OH产生流动力场之间的排斥作用,将其推向远方,如此作用结果让蛋白质分子上大多氨基酸分子的—CO—OH都朝外排列并指向远方,而—CH—NH2则都朝内排列并指向中心。—CO—OH在流动力场作用下除了指向远方之外,还让氧原子以太旋涡的黄道面涡流产生如伞面外凸偏向。对于一个球形碱型蛋白质分子来说,如此—CO—OH指向分布,其表面会看上去会有一个个单突点的结构形态,就如将许多小段吸管插满在一个大泥球上。

而—CH—NH2朝内排列指向中心,其振动力场之间相互干涉排斥,在蛋白质内部空间形成一个以振动力场为作用方式的大场涡,即大场涡形成大以太旋涡,这以太旋涡偏向性与流转速度都很高,对内表达出很高的活跃性,犹如存在一个强振动力场。同时让蛋白质分子有分解与膨胀的趋势,在空间上蛋白质分子内部的各个氨基酸分子有更松散的结合程度,如此也导致碱型蛋白质分子的体积相对要大。

如此蛋白质分子按酸碱属性,可分五种形态:强酸型蛋白质分子,弱酸型蛋白质分子,中性蛋白质分子,弱碱型蛋白质分子,强碱型蛋白质分子。中性蛋白质分子又可分为强酸—强碱型中性蛋白质分子,弱酸—弱碱型中性蛋白质分子,纯中性蛋白质分子。这五种主体形态及三种细分形态是生命体蛋白质分子最重要的分类形态,由此人们不再被种类繁多、结构复杂、数量万千、大小不定的蛋白质分子所迷惑。会在后面章节继续论述以上几种形态的蛋白质分子的各种以太旋涡理论解析下的具体功能。

4、极性蛋白质分子

应包含各氨基酸的酸碱性数量不同,及各酸碱性氨基酸在蛋白质颗粒空间的疏密分布不同,导致蛋白质局部空间的振动力场与流动力场分布不均,从而让蛋白质分子次生以太旋涡表现出极性,这与极性分子以太旋涡的原理一样,只是构架空间要广大些,参与的微观以太旋涡要多些。在蛋白质分子空间里,由于氨基酸种类不一,力场不同,导致绝对均衡对称的氨基酸分子分布形态下的蛋白质分子结构是不存在的,于是可知所有蛋白质分子都是极性分子。其以太波流一体状态下的力场形态为:

振动力场、流动力场各自不对称

以一个球形蛋白质分子为例,设分子一半组成是强酸性氨基酸分子,分布在左半边,一半组成是强碱性氨基酸分子,分布在右半边,其振动力场与流动力场整体对外表现为中性,是为中性蛋白质分子。但在局部区域,即接近左半边顶点或右半边顶点的局部空间里,其振动力场与流动力场分别占主导地位。而接近左右半边交接处的局部空间里,其振动力场与流动力场又是相互中和。

如此结构的蛋白质分子,会应外界振动力场与流动力场的作用,而出现快速轴纠正反应。比如这蛋白质分子若出现在一个强振动力场环境空间里,蛋白质分子的振动力场与环境振动力场相互排斥,左半边会被推至背离环境振动源的方向,而右半边会被吸引至靠近环境振动源的方向,表达为轴纠正。反之这蛋白质分子若出现在一个强流动力场环境空间里,蛋白质分子的流动力场与环境流动力场相互排斥,右半边会被推至远离环境振动源的方向,而左半边会被吸引至接近环境振动源的方向,也表达为轴纠正。两种轴纠正都是极性蛋白质分子对环境变化作出的动作反应。即:

极性蛋白质分子会有轴纠正运动

若这个蛋白质分子处于氲氤状态下的以太空间里,由于左半边的振动力场以波的形式产生作用,会在左半边外围空间产生正以太压力,正以太压力会推动蛋白质分子向振动力场的反方向位移,也即右移动。同时,右半边的流动力场以流的形式产生作用,会在右半边外围空间产生负以太压力,负以太压力会牵引此蛋白质分子向流动力场的反方向位移,也即向右移动。两种力场都对此蛋白质分子产生向右的作用力,这蛋白质分子就会向右方向定向位移。自然,由于蛋白分子的振动力场及流动力场同以太空间相互作用的效果是很弱的,这种位移速度也是非常缓慢,但又是存在的。不同极性的蛋白质分子的运动形态也是千差万别的。这是极性蛋白质分子能够自主运动的力场作用根源,而非当下科学界对蛋白质分子的认识只是随机分布在空间的颗粒形态,可以任由环境变化摆布与安排。即:

极性蛋白质分子能够自主定向运动

极性蛋白质分子即能进行轴纠正运动,又能自主定向运动,因此对环境力场变化能随时随地产生空间位置变动与自身状态调整,这就是蛋白质分子的应激反应。

在这球形蛋白质分子内部空间,—CO—OH与—CH—NH2也是对应地处于分布疏密不均的状态,与外部的基键分布刚好相反,导致内部空间的振动力场与流场也是有单一指向性,是从—CH—NH2指向—CO—OH。而—CH—NH2的振动力场有向外扩张的趋势,—CO—O的流动力场有向内收敛的趋势,内部振动波从—CH—NH2指向—CO—OH并形成场涡,再牵引以太形成次生以太旋涡与涡管,涡轴是两力场的中心连接线。于是两个力场分别让—CO—OH聚集的区域向内收敛,又从涡管处向外扩张;让—CH—NH2聚集的区域向外膨胀,又从涡管处向内凹陷,形成—CH—NH2面钝,—CO—OH面尖的桃心形状的空间结构。这就是极性蛋白质分子空间形变的内在力场作用根源。其它更复杂的多氨基酸结合成的蛋白质分子,会也对应的更复杂的空间结构,但形变的作用原理都是一样的。

各酸碱性氨基酸应数量与种类不同,其不同排列组合形成的蛋白质分子可以有无穷多种,于是蛋白质分子的极性形态也是多种多样的。如有强酸—弱酸型·极性蛋白质分子,有强酸—中性型·极性蛋白质分子,有强酸—弱碱型·极性蛋白质分子,有强酸—强碱型·极性蛋白质分子;又有弱酸—中性型·极性蛋白质分子,弱碱—中性型·极性蛋白质分子,弱碱—强碱型·极性蛋白质分子,等等不一而足。又如有单涡轴极性蛋白质分子,有多涡轴极性蛋白质分子,等等。这些蛋白质分子的振动力场与流动力场在分子周边空间分布不均及强弱不同,并有各自特征,导致蛋白质分子对外界环境的不同振动力场与流动力场产生相应作用,表达为特定的功能。而所有功能,都是通过振动力场与流动力场产生作用的。

水分子与水体氲氤状态

水是生命体极为重要的营养物质,常温下呈液体态,化学分子式是H2O,相关知识过于丰富,这里就不赘述。人们由西方物理学在错误的物质观、宇宙观、时空观基础建立的,导致对水分子的结构也停留在错误的认知上,从而水分子在生命活动中的主要作用很不完整。

以太旋涡理论里,由于氧原子以太旋涡与氢原子以太旋涡原子量分别是1与8,两者相差八倍。两种以太旋涡的的核空间体积相差之悬殊,犹如木星与地球的区别,空间以太旋涡的振动力场、流场大小更是完全不对等,让两者耦合方式结合在一起的水分子的结构,是以一个氧原子以太旋涡为主体的次生以太旋涡结构,而非当下化学界的水分子模型中氢氧电子云空间体积相对接近的形态。两个氢原子以太旋涡在氧原子以太旋涡的涡流约束下的轨道上作飘移运动,即两个氢原子以太旋涡绕氧原子核作公转运动,其中两个氢原子一个在近氧原子核轨道,一个在远氧原子核轨道。

作者注:当下的氢原子半径被“测定”为是0.037纳米,氧原子半径被“测定”为是0.074纳米,好象两者只相差一倍大小,这其实是错误数据,只能参考。在于这种原子半径测定,其实是原子以太旋涡的力场与仪器作用的平衡边界大小,而非原子本身大小对应的半径。由以太旋涡的振动力场向无穷远处扩散可知,其相应的以太流场也是可以存在于无穷远,于是一个原子以太旋涡的半径本身可以是无穷大。

应绕氧原子核周期不同,两氢原子以太旋涡会在氧原子以太旋涡空间形成连珠现象,即两氢原子核与氧原子核在同一条直线上,如此连珠状态强化了氧原子以太旋涡的偏向性,让氧原子以太旋涡的振动力场与流动力场强度提高,可以对其它分子耦合结构起到破坏作用,宏观上表达为水解与溶解。

远氧原子核轨道的氢原子以太旋涡相对近氧原子核轨道的氢原子以太旋涡,更容易受外界振动力场与流场的作用而脱离氧原子以太旋涡的涡流轨道,成为游离态氢原子以太旋涡,即氢离子H+。同时,近氧原子核轨道的氢原子以太旋涡与氧原子以太旋涡构成氢氧根离子OH-。这是水分子的以太旋涡理论下的分解原理。两种离子分别被其它大分子大原子以太旋涡的流场吸引并耦合,成为其远核外大电子,及羟基,是酸与碱、碱基的物质结构基础。

水在化学反应中更多是的充当大多数分子的溶剂与反应场所,是一般化学常识,这也是宏观层面的粗浅认识。由于水是作为溶剂功能存在,在整个化学反应过程中,其分子以太旋涡的数量也最大,因此在以太层面,由于水分子的振动,即氧原子以太旋涡轨道上的氢原子以太旋涡连珠现象,对氧原子以太旋涡的偏向周期性发生并向外传递振动作用,会让整个溶液空间的以太,处于与水分子以太旋涡应连珠现象对应波动的氲氤状态,即水体空间的以太处于与水分子振动相对应的特定频谱的波动状态。这个水体氲氤状态,是氧原子以太旋涡热运动、氢原子以太旋涡热运动、两氢原子以太旋涡连珠对氧原子以太旋涡偏向,这三种振动形态的叠加形态。生命体正常活动中,其空间整体的水体氲氤状态,又称为基态。

在宏观上,水温是一个可计量的水分子热运动观察现象,是水溶液的氲氤状态在红外线波段均衡振动的体现。而氲氤状态在远红外线、可见光、紫外线、远紫外线及至更高频率下的波动的体现则不是温度计可以度量的,却是客观存在但又没有让人类认识的。

这个水分子以太旋涡振动导致的水体空间以太氲氤状态,会应季节、地域、海拔、气温、气压、大分子原子以太旋涡振动,等等外界因素产生强弱与频率的变化,并对其它分子的分解与化合过程起到重要影响作用,在生命活动中有着很关键的地位。

氨基酸分子波流一体

一个生命体,如人、动物、植物等,由众多微观化学分子组成,人们一般归类是水、碳水化合物、蛋白质、脂肪、无机盐等几大类。而生命体中,又以蛋白质与遗传物质DNA尤为重要,蛋白质的基础成分是氨基酸,遗传物质DNA的基础成分是核糖核苷酸。在以太旋涡理论里,可以重新考查这几种重要的分子结构。

氨基酸,是含有碱性氨基和酸性羧基的有机化合物,化学式是R—CHNH2COOH。羧酸碳原子上的氢原子被氨基取代后形成的化合物。是蛋白质的基础单元,人们在生命体中共发现二十来种氨基酸。这些氨基酸通过不同的数量与组合方式,构成生命机体的重要组件。由于科学界并没有认识到以太的存在,从而不能构建出正确的原子模型与原子核模型,于是对氨基酸构成蛋白质的过程描绘,氨基酸组成蛋白质后的化学功能表达,等等这些重要的生命现象,处于模棱两可或错误的描绘。如消化酶,是如何高效地实现催化作用?抗体酶,如何高效地杀灭病毒细菌?等等。这里在以太旋涡理论的基础上,解析氨基酸的基本结构与功能作用,来揭开这些生命活动的运作机制。

氨基酸,存在两个主要官能团:氨基—NH2与羟基—OH,再通过另外一个大分子基团相连,形成各种氨基酸,这被科学界在实验室中所认识。这里主要讲解这两个官能团的功能,核心是这两个官能团都存在一种模式,一体形态的振动与流动,即波流一体。

氨基,是—NH2,在经典原子理论里,被认为是一个氮离子与两个氢离子通过共用电子结合在一起,已经《万物意志篇》中否定共用电子概念,因此实际并不是这样结构形态。以太旋涡理论下,氨基的这种—NH2结构,是两个氢原子以太旋涡与一个氮原子以太旋涡通过耦合方式结合在一起,也即,由于氢原子以太旋涡与氮原子以太旋涡的尺度差异,两个氢原子以太旋涡在氮原子以太旋涡的黄道面上作漂流运动,一如土星木星围绕太阳公转。其中,每一个氢原子以太旋涡各占据一条公转轨道,两个氢原子以太旋涡自内向外共占据两条轨道。如此两个氢原子以太旋涡,成为这个氮原子以太旋涡的“远核外大电子”,这两个氢原子以太旋涡在公转时产生的位置关系变化,结合氮原子以太旋涡本身的涡流偏向特性,让氮原子以太旋涡空间里的涡流发生整体形变,从而对外产生特定的化学属性。

所有其它大原子以太旋涡,如C、N、O等,在其含H原子以太旋涡的离子耦合结构中,如—CH、—NH、—OH等,H原子均是如此作为“远核外大电子”功能,能强化这些大原子的以太流场与振动力场。同时,在C、N、O与H的相互耦合过程中,存在大原子量优先耦合的情况,即在碰到C、N、O同时存在的化合环境里,H优先与O结合形成—OH,其次与N结合形成—NH,最后才与C结合形成—CH,原因在于这三种原子以太旋涡中,O的活跃性最高,能优先破坏—H并捕获H原子以太旋涡,其次是N,最小活跃性是C。后面其它高分子的构架是同一原则,就不再另外说明。

两个氢原子以太旋涡的位置关系,主要体现在两个氢原子以太旋涡产生连珠现象,即两个氢原子以太旋涡与氮原子核处在同一条直线上,如太阳系里的两星连珠一般。这连珠现象,会对氮原子以太旋涡外围以太产生压力,周期性的连珠现象将压力向外传递时,表达为振动波。这股振动波,是氨基酸能对外界其它物质产生化学作用的重要物质作用形态。

而氮原子以太旋涡,常温下其正负原子形态通过异旋同极吸附模式耦合之后产生稳定的氮气,其元素物质的化合物能用于强酸、炸药、氧化剂,等等,表明的是氮原子以太旋涡的涡流特性本身,就是一种“连珠频率低,偏向大,角动量低”的形态,可以判定其本身的旋涡空间,存在几个大电子以太旋涡,图示中的数量设定为两个,大电子以太旋涡的具体数量仍待人们在实验室中确认。如此涡流特性,结合两个远核外氢原子以太旋涡的连珠结构,可以产生四星连珠现象,即氮原子以太旋涡内部的两个大电子以太旋涡与外来的两个氢原子以太旋涡,及氮原子核在一条直线上,周期性的四个大电子—氢原子以太旋涡连珠现象,产生周期性的振动波,如此强化了氮原子以太涡流对外界物质的作用,是为氨基,—NH2。

宏观上如氨气,NH3,有强烈的刺激性气味,其实就是这个氮原子以太旋涡的大电子导致的大偏向作用结合远轨道上的三个氢原子以太旋涡,产生更强振动波后给人的嗅觉感官。氨气的物理特性与氨基的物理特性,是有共同之处的,在于这种物理特性的内在运作机制相同。

羟基,是—OH,在经典原子理论里,被认为是一个氧原子与一个氢原子通过共用电子对结合而成,实际也并不是这样结构形态。以太旋涡理论下,—OH,是氧原子以太旋涡捕获氢原子以太旋涡后形成的氧—氢以太旋涡耦合结构。在这个结构里,氢原子以太旋涡在氧原子以太旋涡的黄道面上作漂移运动,相当于氧原子以太旋涡的“远核外大电子”,应氢原子以太旋涡在轨道圆周上的方位不同,从而让氧原子以太旋涡产生偏向作用,成为极性分子以太旋涡。

与氮原子以太旋涡类似,氧原子以太旋涡在常温下其正负原子形态通过异旋同极吸附模式耦合之后产生稳定的氧气,其元素物质的化合物能用于强酸、氧化剂,等等,也表明的是氧原子以太旋涡的涡流特性本身,是一种“连珠频率低,偏向大,角动量低”的运动形态,同样存在几个大电子以太旋涡。如此,在氧原子以太旋涡黄道面上漂移的氢原子以太旋涡,氧原子以太旋涡内部空间的大电子以太旋涡,产生大电子—氢原子以太旋涡连珠现象后,让氧原子以太旋涡的偏向表达到极致,对外表达出特定的化学属性。周期性的以太旋涡连珠现象产生振动波。如此涡流偏向与振动波对外界物质产生作用,应其与不同的其它原子(团)产生耦合结构,从而有不同的名称,如只与氢原子以太旋涡结合,构成水分子,是为氢氧根OH;只与活跃金属离子以太旋涡结合,构成碱,是为碱基OH,与有机分子以太旋涡结合,结构氨基酸等有机分子,是为羟基,—OH。

羟基的结构及运动模式,与水分子以太旋涡中的氢氧根OH有完全一样的形式,只是由于位置处在有机分子的环境中,而表现出不一样的化学属性,这只是信号特征不同而已。水分子以太旋涡的运动形态,在《万物意志篇》中的“燃烧与水分子结构考查”小节中作详细描绘,读者可以参考其中的表述。同时,羟基的功能,也与碱基OH是一样的,即能强化涡流的吸引作用。碱基的运动形态,在《万物意志篇》中的“酸性与碱性”小节中作详细描绘,读者也可以参考其中的表述。

氨基酸对外的物质作用,主要通过氨基与羟基来体现。氨基与羟基,是以离子以太旋涡的形式,分布在R基的周边。而R基,仍是单原子或多原子耦合结构下的分子以太旋涡。应R基的原子以太旋涡的成分不同,氨基与羟基在氨基酸分子以太旋涡的空间里作漂移运动时,对外表达的振动作用强度与涡流形态不同,从而有不同的酸碱属性,及不同种类的氨基酸,如甘氨酸、丙氨酸、缬氨酸,等等。目前为止,人类共发现二十二种氨基酸。

由上面关于氨基与羟基的运动形态描绘可知,氨基酸,虽然含有碳、氧、氮元素,其实是水分子的变体,即扩展版。水分子的化学结构式是H—OH,而氨基酸的通用结构式虽然是R—CHNH2COOH,在以太旋涡理论中,是可以分为三大基础结构:—CH—NH2,—CO—OH,—R三种离子以太旋涡。其中—CH—NH2,对应水分子中的—H;—CO—OH,对应水分子中的—OH;—R对应对水分子以太旋涡的涡管吸附结构,即共价键。这三大基础结构的功能,与水分子的—H、—OH、涡管吸附结构是相同的,只是借碳、氧、氮元素原子以太旋涡的耦合结构,产生更高强度的涡流偏向作用与振动波,产生更高强度更复杂的涡流偏向作用与振动波,进而强化了这些离子的功能。这也是生命分子的全息构建形态。

氨基酸通用分子结构式,更接近实质的写法是:

(NH2·CH)·R·(CO·OH)

这结构式里,N与两个H耦合,最先形成—NH2,C与H耦合,也最先形成—CH;再—NH2与—CH耦合,形成—NH2—CH。同时,C与O耦合,最先形成—CO,O与H耦合,也最先形成—OH;再—CO与—OH耦合,形成—CO—OH。最后—NH2—CH与R及—CO—OH与R分别耦合,形成(NH2—CH)—R—(CO—OH)。如此结构式,可以反映分子以太旋涡下的先后及层级耦合作用。用·代替—,让这结构式更简约。

在—CH—NH2离子以太旋涡中,—CH,是氢原子以太旋涡成为碳原子以太旋涡的“远核外大电子”,也成为极性离子,—CH与—NH2通过耦合作用结合在一起时,形成的—CH—NH2离子的最大作用,是—CH与—NH2各自偏向叠加后的效果,有更高的的涡流偏向作用强度,并带来更高的振动波振幅,对外界作用表达为更高强度的振动力场。

同样,在—CO—OH离子以太旋涡中,—CO,宏观上对应的是一氧化碳气体,即CO,是一种极性分子以太旋涡。—CO是双原子极性离子以太旋涡,极性的本质是涡流偏向不对称,而碳元素C与氧元素O有相近的原子量,结合成CO后,会带来更大范围的涡流强度,即CO次生以太旋涡的作用范围更广,但极性又不如CH、NH2之类因原子量相差大而来得强烈。如此—CO与—OH通过耦合作用结合在一起时,形成的—CO—OH离子的最大作用,是—CO与—OH各自偏向叠加后的效果,从而有更高的涡流作用强度与相对略高的振动波振幅。在涡流作用上,表达为更高强度的吸引流场。在振动波作用上,则由于振动波振幅相对高,让—OH在有机分子中表达出酸性,是为羟基。而OH与金属离子结合成无机化合物,则只是涡流作用占主导地位,振动波则可忽略,从而只表达出碱性,是为碱基。

R基离子以太旋涡的作用,就是将—CH—NH2与—CO—OH约束在以R基为中心的局部空间内,应R基离子以太旋涡的偏向与流转周期不同,从而让—CH—NH2与—CO—OH对外界物质的作用有不一样的效果,表达为不同的氨基酸。

如此,—CH—NH2与—CO—OH,再次通过耦合作用被约束在R基周边,让整个氨基酸分子以太旋涡存在两种基本作用形态:振动与流动。—CH—NH2产生振动力场,—CO—OH产生流动力场。振动力场,以波动的形式对外界产生物质作用,可以破坏外界物质的耦合结构,一如电振动波、声波、热振动对其它物质的分解作用。而流动力场,则以涡流向心力及涡管吸附的形式对外界产生物质作用,可以吸引外界物质形成耦合结构,一如水漩涡的流动可以汇集重物质或漩涡涡管可以吸引落入其中的重物质。宏观与微观有相对应的运动场景,这也是全息构建模式。

科学界发现这二十几种氨基酸,有的表达出酸性,有的表达出碱性,有的表达为中性,也是源于这两种力场的作用强度的综合效果。应R基的形式不同,结合氨基与羟基后,产生的偏向不同,整个氨基酸分子的振动力场与流动力场同时对外界产生作用时,其强度有三种对比关系,从而表达为不同的酸碱性:

振动力场 > 流动力场,呈酸性
振动力场 = 流动力场,呈中性
振动力场 < 流动力场,呈碱性

同是酸性或碱性的氨基酸,也是呈梯度分布的,诸如又可分为强酸性与弱酸性,或强碱性与弱碱性,这个梯度分布的理解参照普通化学物质的酸碱性梯度分布就可以,就不继续展开说明。

这两种基本作用形态,及其构成的不同酸碱性的氨基酸,能让众多氨基酸分子以太旋涡能够相互吸形成肽链,进而形成不同种类的蛋白质,并让相应的蛋白质有特定的功能,或能成为机体组织的构架基础,或能让蛋白质破坏外界其它物质的耦合结构,是酶起催化作用的核心作用形态,等等。

无论哪种氨基酸,都存在振动力场与流动力场。一般来说,流动力场占主导地位的氨基酸若相互聚在一起,容易通过异极吸附作用而形成肽链长链分子进而形成大颗粒蛋白质分子,是组织纤维结构的主要成分之一;振动力场占主导地位的氨基酸,只能形成短链分子后形成小颗粒蛋白质分子,是酶的主要成分之一。会在后续章节中继续描绘这种不同氨基酸形成蛋白质分子的各类功能。

这两种基本力场作用的统一形态,就是氨基酸分子以太旋涡的波流一体。

 

5、长链分子团

5、长链分子团

长链分子,由于其内部振动波传递与原子以太旋涡的涡流运动,导致原子以太旋涡之间的位置关系不平衡,从而出现扭曲运动。当分子片断持续扭曲相互靠近,通过范德华力相互吸引靠近,最终形成一个毛线团状的缠绕空间结构,就是长链分子团。在细胞空间,存在大量这种长链分子团,如蛋白质分子、染色体,等等。

这种长链分子团,同样由于其团形空间结构的特殊性,也有其特定的两种形态的以太旋涡的振动力场与流场:

一是在长链分子团内部,由于众多原子以太旋涡振动并在长链上传递,会在团形空间内产生螺旋波传递,即场涡,与涡形振动力场。这个振动力场驱动内部以太流转,两者波流一体。

这内部的振动力场,同时还调整个团形空间里原子以太旋涡的分布形态,最终达成一种分子团空间结构的圆满状态,即团球结构,及分子团内部能量分布的圆满状态,即氲氤状态。这是一个动态的不断的作用过程,并会因外界的干扰而产生对应的形变与重新调整。

二是在长链分子团外部,分子团里的所有原子以太旋涡或多原子分子以太旋涡的振动力场向四周发散,导致周边空间的以太运动分布形成以分子团为中心的流场,两者是为波流一体。

长链分子团的整体作用特征,就是通过内部场涡驱动以太旋涡,犹如一颗行星内部振动驱动周边空间的以太形成以太旋涡。如此一个分子团周边空间,也是存在两极涡管通道结构,与类黄道面的以太旋涡流场。

同时,由于元素原子种类的有限性,与长链分子巨大数量的关系,导致长链分子上存在众多时空结构相近或相同的多原子分子以太旋涡,这些分子以太旋涡之间由于分子团结构而距离过于靠近,当各自涡流的周期性偏向作用而产生振动波后,在相同的方位上会波干涉。干涉波以螺旋涡形自内向外呈辐射形态传递,继而影响外围空间其它分子以太旋涡的分布形态。

这种螺旋涡形辐射形态的干涉波,是细胞形成血管、脊柱、肠道等等圆柱空间结构的重要作用因素,会在后续章节中陆续说明。

整个细胞、器官、人体空间,就是由这些众多离子、双原子分子、多原子分子、长链分子、长链分子团等不同时空尺度的微观以太旋涡相互吸引、堆积而成。各原子、分子以太旋涡,在建构出更高时空尺度的同时,不断展现出原子以太旋涡振动力场与流场的空间运动形态,也与太阳系的物质结构与运动形态相近,这就是全息。全息建构模式,体现在生命的各个时空尺度,也会在后续章节中展现。

由于现代化学及生物学建立的基础理论是在错误的经典原子模型之上的,由此产生的电子云、化学键、电子跃迁发光等概念与原理都是要重新修正、摈弃、批判的,于是当下所有人们在教科书上或学术论文里接受的各类无机化学分子式与有机化学分子式及其对应的分子结构式,乃至复杂的高分子结构式,都须要重新考证与考查其以太旋涡理论下的正确结构模型。这是一个复杂且巨量的人类研究工程,其工作量远超出作者的能力范围之外。因此在以生命运动机制为论述核心的本书各章节里,作者并不尝试纠正已经广为流传的各类无机与有机化学分子式及分子结构式,只是就其主体的结构特征,及未被人们认识的另类运动机制作即生命体各时空尺度下的组织结构的以太旋涡波流一体形态,也即以太旋涡的振动力场与流动力场的统一形态,作一个简单粗略的补充说明。

本书中作者引用所有高分子化学式,如后面的氨基酸分子结构式、核糖核苷酸分子及其它分子结构式等,都不代表作者认可这些化学分子结构式是正确的,在于人类观察能力是不能证明分子结构式的确是这样的。分子式更多的是反映元素原子成分及其比例,这在实验室可以通过宏观的结果产物的比例来证明,而分子结构式则基本是在这成分及比例基础上,通过经典核外电子分布规律、共价键理论、电子云等概念想象出来的,存在大概率错误的可能,但为方便说明问题而作一个引用与以太旋涡理论下的补充。更接近客观事实的分子结构式,需待后人的努力与全新观察方法的探寻。读者在理解作者论述时务必要注意这一点,而不是简单相信作者的表述是完全符合客观物质结构形态的。

4、长链分子

4、长链分子

长链分子,是由多个原子或多个多原子分子串连起来的分子以太旋涡形态。这个串连方式,就如许多颗佛珠通过一根绳子穿过中心的小孔连接起来一样。长链分子主体上是同旋异极吸附结构,是一个原子以太旋涡的南极与另一个原子以太旋涡的北极相吸,这个原子以太旋涡的北极,又与还一个原子以太旋涡的南极相吸,如此反复连接,可以构成极长的分子链。

若这个长链分子与其它长链分子通过范德华力相互吸引、交织,让整个长链分子如一张渔网般铺开,形成空间立体分布形态,这其实就是普通固体的一般结构模式。最直观的就是塑料纤维交织在一起形成网状、膜状结构的形态。在细胞空间内部,也存在大量的这种长链分子以太旋涡结构形态,如肽链、DNA之类的长链分子,链上的原子以太旋涡的数量可达几十万甚至更多。

这种长链分子,由于其长链形空间结构的特殊性,有其特定的两种形态的以太旋涡的振动力场与流场:
一是在长链分子内部,由于原子以太旋涡振动,会在纵向上产生波传递与振动力场。

结果导致整个长链分子,如长绳被抖动后产生绳波一般,而在长链分子上,也产生波传递,这种波传递会影响各原子以太旋涡间的位置关系,从而影响长链分子的空间扭曲形态,进而影响整个长链分子以太旋涡的横向振动波发散形态与振动力场形态。

二是在长链分子外部,长链分子里的所有原子以太旋涡或多原子分子以太旋涡的振动力场向四周发散,导致周边空间的以太运动分布形成以分子链为中心线的流场。两者是为波流一体。

这种振动力场,也是一种相互承载、相互干扰、相互叠加后的力场,并叠加有原子以太旋涡、多原子分子以太旋涡的极性,且复杂度更高,让长链分子在局部上具有更广泛的运动形态,可以大规模、批量化实现某种具体的物质作用。

3、多原子分子

3、多原子分子

多原子分子,就是构成的原子以太旋涡数量在三个以上,在几十个之内,可以通过简单分子式描绘出的分子以太旋涡。无机分子或离子如H2O、H2SO4、CaCO3、CO2、NO3-,等等,或有机物分子如氨基酸分子,核苷酸分子,羧基、羧酸,烃基分子,等等。

这些分子以太旋涡,也是通过涡管吸附、范德华力相互结合在一起,形成的多旋涡空间嵌套、多旋涡互绕的分子形态。由于这种分子是由可数的不同原子量、振动力场涡与流场强度的原子以太旋涡组合而成,分子中的单个原子以太旋涡对整个分子的影响明显,特别是包含大原子以太旋涡,且原子数量又少的时候,会起主导影响,这是区分多原子分子与长链分子团的一个重要特征。

这种多原子分子团,由一个大原子以太旋涡或少数几个次大原子以太旋涡主导整个分子以太旋涡的运动形态,并通过整体的振动力场与流场对外产生影响作用,如H2SO4,整体能表达出硫元素原子以太旋涡的作用特征,CaCO3,整体能表达出钙元素原子以太旋涡的作用特征,又如氨基酸分子,整体能表达出氮元素原子以太旋涡的作用特征,等等。

一个多原子分子以太旋涡的振动力场,是由这个分子的所有原子以太旋涡的振动力场相互作用后的形态,是一种相互承载、相互干扰、相互叠加后的力场。由这种振动力场牵引而成的流场,也是一种复杂化的强化或削弱后的以太流场形态。同时,应不同元素原子成分与各原子的方位结构差异,在这个分子的某个或某几个方向表达出局部涡流偏向性,即极性。特别是在有机物的分子中,许多分子含有—H、—HO两种基团,这两种基团会成为分子中的类远核外大电子,再叠加上这种分子以太旋涡本身的极性带来的涡流偏向与力场作用,更进一步强化H+、OH-的作用效果。

如OH-,即氢氧根,在有机物分子中被另描绘为分子式—OH,即羟基,并被经典化学理论认为是10个电子的OH-再失去一个核外电子成为9个电子的—OH,才表现出更强的氧化性。其实OH根本就没有失去电子,也不是10个核外电子。两者结构完全一致,都是氧原子以太旋涡嵌套氢原子以太旋涡这一时空结构。只是在有机物分子中,OH以太旋涡叠加上有机物分子以太旋涡的极性而强化了作用效果而已。这种叠加效果,就如古代骑兵的马刀(OH)劈砍动作,在马匹(有机物分子)的高速奔跑后(极性)的叠加效果,让马刀有更高的速度产生劈砍作用。而单就马刀(OH)的劈砍动作而言,骑不骑马是完全一致的。宏观与微观的物质作用原理是相通的。

2、极性分子

2、极性分子

若顺逆互绕的两原子以太旋涡的旋涡角动量不同,振动力场、流场强度相差大,会导致整个分子以太旋涡有很强的偏向性,即极性,在宏观上表现出酸、碱等属性,或氧化性、腐蚀性,等等作用形态,如HCl,NaCl,KCl,OH-,等等。这些分子或离子之中,阳离子的时空尺度与阴离子的时空尺度、力场强度相差较大,会出现类大电子结构下的原子以太旋涡运动形态。

设阳离子的振动力场与流场强度均小于阴离子。如此阴阳离子相互耦合结构下的分子以太旋涡里,其阳离子,就会象阴离子的远核外大正电子以太旋涡,让整个分子以太旋涡的运动形态,有很大的偏向性——这种偏向性要小于游离态的阴离子的偏向性,但要大于同元素原子结构下的双原子分子以太旋涡的偏向性。整个分子以太旋涡,阴离子的振动力场与流场占主导地位,并向外界表达运动特征。阳离子的振动力场与流场,则被包含在阴离子的振动力场与流场之中,处于从属作用地位。

反之,若阳离子的振动力场与流场强度大于阴离子的的振动力场与流场强度,则阴离子会象阳离子的远核外大负电子以太旋涡,也让整个分子以太旋涡的运动形态,有很大的偏向性。整个分子以太旋涡,阳离子的振动力场与流场占主导地位,并向外界表达运动特征。阴离子的振动力场与流场,则被包含在阳离子的振动力场与流场之中,处于从属地位。

这种极性现象,在含有H+与OH-的分子以太旋涡中犹为明显,在于H,即氢原子,是所有元素原子以太旋涡中原子量与时空尺度都最小的原子以太旋涡,非常容易被其它大原子以太旋涡捕获,成为大原子的远核外类大电子。当这种远核外类大电子绕大原子以在旋涡作高速核外运动时,产生最强的以太涡流偏向作用与振动波传递,从而对分子以太旋涡外围空间的其它物质结构产生力的作用,由此导致其它物质产生化学反应或时空结构形态形变,是分子以太旋涡表达出酸性、碱性或其它特殊物质作用的时空结构形态根源所在。特别是在生命体的基础分子结构中,如氨基酸、核苷酸,都是由于含有大量的H+、HO-两种离子而有特殊的物质作用形态,也是中草药对人体产生热性、寒性感观的的内因,会在后面小节穿插说明这两种离子的一般特性。

1、双原子分子

1、双原子分子

两个或多个原子以太旋涡通过涡管相吸作用及范德华力,相互结合在一起,原子以太旋涡外围的以太形成次生以太涡流,包裹原子以太旋涡,让多原子以太旋涡之间的结构保持稳定时空结构,即为分子以太旋涡。涡管相吸作用分同旋异极吸附作用与异旋同极吸附作用,这是共价键的真正内涵,而非西方科学理论描绘下的“共用电子对”这一联结方式,这已经在《万物意志篇》的“耦合结构形态”章节作充分说明。

由于分子耦合结构需要全新的研究才能考查分子以太旋涡的实际形态,这里为了方便描绘,引用的分子结构形态,都是经典化学分子结构及分子式,只是读者理解这种结构时,要自行代入分子以太旋涡耦合结构及分子振动波形态。

一个细胞内部空间,除了离子之外,就是无数的分子以太旋涡填充其空间。应一个分子以太旋涡包含的原子以太旋涡的数量不同,及原子以太旋涡相互结合后空间形态的差异,细胞内部空间,可以粗略分几种分子结构形态,即双原子分子,极性分子,多原子分子,多原子长链分子,长链分子团。这些不同结构形态的分子以太旋涡,其周边空间,都存在波流一体运动形态,这里一一作简单介绍。

双原子结合下的分子以太旋涡,必是异旋同极吸附结构,即分子以太旋涡,是由一个顺旋原子以太旋涡与一个逆旋原子以太旋涡通过两边同极涡管相互吸附在一起。

双原子结构下的分子以太旋涡,其空间存在两个原子以太旋涡的振动力场与流场。这两个振动力场,应双方波动的相位不同,而相互削弱对方的振动力场,表现为相互干扰,进而导致形成的流场,也是相互中和或处于最弱能量状态。如此导致周边空间以太缺少稳定单向的牵引作用而形成紊流、湍流运动,包裹着双原子以太旋涡。

一般双原子气体分子,特别是同元素原子的双原子气体,是有最弱的次生以太旋涡能量状态,如O2、H2、N2,等等。

分子空间波流一体

两个或多个原子以太旋涡通过涡管相吸作用及范德华力,相互结合在一起,原子以太旋涡外围的以太形成次生以太涡流,包裹原子以太旋涡,让多原子以太旋涡之间的结构保持稳定时空结构,即为分子以太旋涡。涡管相吸作用分同旋异极吸附作用与异旋同极吸附作用,这是共价键的真正内涵,而非西方科学理论描绘下的“共用电子对”这一联结方式,这已经在《万物意志篇》的“耦合结构形态”章节作充分说明。

由于分子耦合结构需要全新的研究才能考查分子以太旋涡的实际形态,这里为了方便描绘,引用的分子结构形态,都是经典化学分子结构及分子式,只是读者理解这种结构时,要自行代入分子以太旋涡耦合结构及分子振动波形态。

一个细胞内部空间,除了离子之外,就是无数的分子以太旋涡填充其空间。应一个分子以太旋涡包含的原子以太旋涡的数量不同,及原子以太旋涡相互结合后空间形态的差异,细胞内部空间,可以粗略分几种分子结构形态,即双原子分子,极性分子,多原子分子,多原子长链分子,长链分子团。这些不同结构形态的分子以太旋涡,其周边空间,都存在波流一体运动形态,这里一一作简单介绍。

1、双原子分子

双原子结合下的分子以太旋涡,必是异旋同极吸附结构,即分子以太旋涡,是由一个顺旋原子以太旋涡与一个逆旋原子以太旋涡通过两边同极涡管相互吸附在一起。

双原子结构下的分子以太旋涡,其空间存在两个原子以太旋涡的振动力场与流场。这两个振动力场,应双方波动的相位不同,而相互削弱对方的振动力场,表现为相互干扰,进而导致形成的流场,也是相互中和或处于最弱能量状态。如此导致周边空间以太缺少稳定单向的牵引作用而形成紊流、湍流运动,包裹着双原子以太旋涡。

一般双原子气体分子,特别是同元素原子的双原子气体,是有最弱的次生以太旋涡能量状态,如O2、H2、N2,等等。

2、极性分子

若顺逆互绕的两原子以太旋涡的旋涡角动量不同,振动力场、流场强度相差大,会导致整个分子以太旋涡有很强的偏向性,即极性,在宏观上表现出酸、碱等属性,或氧化性、腐蚀性,等等作用形态,如HCl,NaCl,KCl,OH-,等等。这些分子或离子之中,阳离子的时空尺度与阴离子的时空尺度、力场强度相差较大,会出现类大电子结构下的原子以太旋涡运动形态。

设阳离子的振动力场与流场强度均小于阴离子。如此阴阳离子相互耦合结构下的分子以太旋涡里,其阳离子,就会象阴离子的远核外大正电子以太旋涡,让整个分子以太旋涡的运动形态,有很大的偏向性——这种偏向性要小于游离态的阴离子的偏向性,但要大于同元素原子结构下的双原子分子以太旋涡的偏向性。整个分子以太旋涡,阴离子的振动力场与流场占主导地位,并向外界表达运动特征。阳离子的振动力场与流场,则被包含在阴离子的振动力场与流场之中,处于从属作用地位。

反之,若阳离子的振动力场与流场强度大于阴离子的的振动力场与流场强度,则阴离子会象阳离子的远核外大负电子以太旋涡,也让整个分子以太旋涡的运动形态,有很大的偏向性。整个分子以太旋涡,阳离子的振动力场与流场占主导地位,并向外界表达运动特征。阴离子的振动力场与流场,则被包含在阳离子的振动力场与流场之中,处于从属地位。

这种极性现象,在含有H+与OH-的分子以太旋涡中犹为明显,在于H,即氢原子,是所有元素原子以太旋涡中原子量与时空尺度都最小的原子以太旋涡,非常容易被其它大原子以太旋涡捕获,成为大原子的远核外类大电子。当这种远核外类大电子绕大原子以在旋涡作高速核外运动时,产生最强的以太涡流偏向作用与振动波传递,从而对分子以太旋涡外围空间的其它物质结构产生力的作用,由此导致其它物质产生化学反应或时空结构形态形变,是分子以太旋涡表达出酸性、碱性或其它特殊物质作用的时空结构形态根源所在。特别是在生命体的基础分子结构中,如氨基酸、核苷酸,都是由于含有大量的H+、HO-两种离子而有特殊的物质作用形态,也是中草药对人体产生热性、寒性感观的的内因,会在后面小节穿插说明这两种离子的一般特性。

3、多原子分子

多原子分子,就是构成的原子以太旋涡数量在三个以上,在几十个之内,可以通过简单分子式描绘出的分子以太旋涡。无机分子或离子如H2O、H2SO4、CaCO3、CO2、NO3-,等等,或有机物分子如氨基酸分子,核苷酸分子,羧基、羧酸,烃基分子,等等。

这些分子以太旋涡,也是通过涡管吸附、范德华力相互结合在一起,形成的多旋涡空间嵌套、多旋涡互绕的分子形态。由于这种分子是由可数的不同原子量、振动力场涡与流场强度的原子以太旋涡组合而成,分子中的单个原子以太旋涡对整个分子的影响明显,特别是包含大原子以太旋涡,且原子数量又少的时候,会起主导影响,这是区分多原子分子与长链分子团的一个重要特征。

这种多原子分子团,由一个大原子以太旋涡或少数几个次大原子以太旋涡主导整个分子以太旋涡的运动形态,并通过整体的振动力场与流场对外产生影响作用,如H2SO4,整体能表达出硫元素原子以太旋涡的作用特征,CaCO3,整体能表达出钙元素原子以太旋涡的作用特征,又如氨基酸分子,整体能表达出氮元素原子以太旋涡的作用特征,等等。

一个多原子分子以太旋涡的振动力场,是由这个分子的所有原子以太旋涡的振动力场相互作用后的形态,是一种相互承载、相互干扰、相互叠加后的力场。由这种振动力场牵引而成的流场,也是一种复杂化的强化或削弱后的以太流场形态。同时,应不同元素原子成分与各原子的方位结构差异,在这个分子的某个或某几个方向表达出局部涡流偏向性,即极性。特别是在有机物的分子中,许多分子含有—H、—HO两种基团,这两种基团会成为分子中的类远核外大电子,再叠加上这种分子以太旋涡本身的极性带来的涡流偏向与力场作用,更进一步强化H+、OH-的作用效果。

如OH-,即氢氧根,在有机物分子中被另描绘为分子式—OH,即羟基,并被经典化学理论认为是10个电子的OH-再失去一个核外电子成为9个电子的—OH,才表现出更强的氧化性。其实OH根本就没有失去电子,也不是10个核外电子。两者结构完全一致,都是氧原子以太旋涡嵌套氢原子以太旋涡这一时空结构。只是在有机物分子中,OH以太旋涡叠加上有机物分子以太旋涡的极性而强化了作用效果而已。

这种叠加效果,就如古代骑兵的马刀(OH)劈砍动作,在马匹(有机物分子)的高速奔跑后(极性)的叠加效果,让马刀有更高的速度产生更强力的劈砍作用。而单就骑兵的马刀(OH)的劈砍动作而言,骑不骑马是完全一致的。宏观与微观的物质作用原理是相通的。

4、长链分子

长链分子,是由多个原子或多个多原子分子串连起来的分子以太旋涡形态。这个串连方式,就如许多颗佛珠通过一根绳子穿过中心的小孔连接起来一样。长链分子主体上是同旋异极吸附结构,是一个原子以太旋涡的南极与另一个原子以太旋涡的北极相吸,这个原子以太旋涡的北极,又与还一个原子以太旋涡的南极相吸,如此反复连接,可以构成极长的分子链。

若这个长链分子与其它长链分子通过范德华力相互吸引、交织,让整个长链分子如一张渔网般铺开,形成空间立体分布形态,这其实就是普通固体的一般结构模式。最直观的就是塑料纤维交织在一起形成网状、膜状结构的形态。在细胞空间内部,也存在大量的这种长链分子以太旋涡结构形态,如肽链、DNA之类的长链分子,链上的原子以太旋涡的数量可达几十万甚至更多。

这种长链分子,由于其长链形空间结构的特殊性,有其特定的两种形态的以太旋涡的振动力场与流场:

一是在长链分子内部,由于原子以太旋涡振动,会在纵向上产生波传递与振动力场。

结果导致整个长链分子,如长绳被抖动后产生绳波一般,而在长链分子上,也产生波传递,这种波传递会影响各原子以太旋涡间的位置关系,从而影响长链分子的空间扭曲形态,进而影响整个长链分子以太旋涡的横向振动波发散形态与振动力场形态。

二是在长链分子外部,长链分子里的所有原子以太旋涡或多原子分子以太旋涡的振动力场向四周发散,导致周边空间的以太运动分布形成以分子链为中心线的流场。两者是为波流一体。

这种振动力场,也是一种相互承载、相互干扰、相互叠加后的力场,并叠加有原子以太旋涡、多原子分子以太旋涡的极性,且复杂度更高,让长链分子在局部上具有更广泛的运动形态,可以大规模、批量化实现某种具体的物质作用。

5、长链分子团

长链分子,由于其内部振动波传递与原子以太旋涡的涡流运动,导致原子以太旋涡之间的位置关系不平衡,从而出现扭曲运动。当分子片断持续扭曲相互靠近,通过范德华力相互吸引靠近,最终形成一个毛线团状的缠绕空间结构,就是长链分子团。在细胞空间,存在大量这种长链分子团,如蛋白质分子、染色体,等等。

这种长链分子团,同样由于其团形空间结构的特殊性,也有其特定的两种形态的以太旋涡的振动力场与流场:

一是在长链分子团内部,由于众多原子以太旋涡振动并在长链上传递,会在团形空间内产生螺旋波传递,即场涡,与涡形振动力场。这个振动力场驱动内部以太流转,两者波流一体。

这内部的振动力场,同时还调整个团形空间里原子以太旋涡的分布形态,最终达成一种分子团空间结构的圆满状态,即团球结构,及分子团内部能量分布的圆满状态,即氲氤状态。这是一个动态的不断的作用过程,并会因外界的干扰而产生对应的形变与重新调整。

二是在长链分子团外部,分子团里的所有原子以太旋涡或多原子分子以太旋涡的振动力场向四周发散,导致周边空间的以太运动分布形成以分子团为中心的流场,两者是为波流一体。

长链分子团的整体作用特征,就是通过内部场涡驱动以太旋涡,犹如一颗行星内部振动驱动周边空间的以太形成以太旋涡。如此一个分子团周边空间,也是存在两极涡管通道结构,与类黄道面的以太旋涡流场。

同时,由于元素原子种类的有限性,与长链分子巨大数量的关系,导致长链分子上存在众多时空结构相近或相同的多原子分子以太旋涡,这些分子以太旋涡之间由于分子团结构而距离过于靠近,当各自涡流的周期性偏向作用而产生振动波后,在相同的方位上会波干涉。干涉波以螺旋涡形自内向外呈辐射形态传递,继而影响外围空间其它分子以太旋涡的分布形态。

这种螺旋涡形辐射形态的干涉波,是细胞形成血管、脊柱、肠道等等圆柱空间结构的重要作用因素,会在后续章节中陆续说明。

整个细胞、器官、人体空间,就是由这些众多离子、双原子分子、多原子分子、长链分子、长链分子团等不同时空尺度的微观以太旋涡相互吸引、堆积而成。各原子、分子以太旋涡,在建构出更高时空尺度的同时,不断展现出原子以太旋涡振动力场与流场的空间运动形态,也与太阳系的物质结构与运动形态相近,这就是全息。全息建构模式,体现在生命的各个时空尺度,也会在后续章节中展现。

由于现代化学及生物学建立的基础理论是在错误的经典原子模型之上的,由此产生的电子云、化学键、电子跃迁发光等概念与原理都是要重新修正、摈弃、批判的,于是当下所有人们在教科书上或学术论文里接受的各类无机化学分子式与有机化学分子式及其对应的分子结构式,乃至复杂的高分子结构式,都须要重新考证与考查其以太旋涡理论下的正确结构模型。这是一个复杂且巨量的人类研究工程,其工作量远超出作者的能力范围之外。因此在以生命运动机制为论述核心的本书各章节里,作者并不尝试纠正已经广为流传的各类无机与有机化学分子式及分子结构式,只是就其主体的结构特征,及未被人们认识的另类运动机制作即生命体各时空尺度下的组织结构的以太旋涡波流一体形态,也即以太旋涡的振动力场与流动力场的统一形态,作一个简单粗略的补充说明。

本书中作者引用所有高分子化学式,如后面的氨基酸分子结构式、核糖核苷酸分子及其它分子结构式等,都不代表作者认可这些化学分子结构式是正确的,在于人类观察能力是不能证明分子结构式的确是这样的。分子式更多的是反映元素原子成分及其比例,这在实验室可以通过宏观的结果产物的比例来证明,而分子结构式则基本是在这成分及比例基础上,通过经典核外电子分布规律、共价键理论、电子云等概念想象出来的,存在大概率甚至完全错误的可能,但为方便说明问题而作一个引用与以太旋涡理论下的补充。更接近客观事实的分子结构式,需待后人的努力与全新观察方法的探寻。读者在理解作者论述时务必要注意这一点,而不是简单相信作者的表述是完全符合客观物质结构形态的。

原子空间波流一体

原子核其内部更微观尺度的以太旋涡在平衡位置上振动,振动波随之向原子周边空间传递与发散,形成振动力场与以太旋涡流场递度分布。原子核的向四周发散能量的振动形态,就如太阳一边发光向四周传递热能,一边向四周传递引力作用,两者只有时空尺度的区别与人类感观的不同,从而有被人类认识与不认识的科学现象描绘——其实在《万物意志篇》解析引力作用的内在机制之前,人类也是认识不到引力作用的真面目。

自然,由于原子核振动形成原子空间是以太旋涡运动形态,以太旋涡存在两极涡管、赤道以太喷流等等局部的不同运动形态,其振动力场分布与流场分布,是一个复杂的立体的三维空间分布,与图示平面形态的振动波与涡流形态是有差别的,这个要注意区分。

这里用蜜蜂的整体形态来模拟一下原子空间形态,以作直观理解。两者有完全一样的波流一体形态,只是时空尺度的区别与媒介的不同:

蜜蜂空间,不仅仅是蜜蜂一个昆虫躯体,而是同时有“嗡嗡嗡”的空气振动波分布在躯体周边。当振动波长时间稳定存在时,由于声波的场涡运动形态,会牵引空气分子形成圆周轨迹,进而会在蜜蜂周边空间形成无数的微空气紊流、湍流,这些紊流、湍流继续融合,最终会形成一个以蜜蜂为中心,类台风形态的大空气旋涡,这种大空气旋涡是有探测意义的。

蜜蜂空间的振动波很直观明了,而原子核振动产生的以太旋涡,被人类探测到力场,就是电荷、静电场。电荷=微观以太旋涡的力场梯度分布。这种振动波,其直观形态则超出人类仪器检验的极限,而唯有在正确认识物质本源的前提下:以太是存在并流动着的,是万物的基础,再通过逻辑推理与建构,才可以认识并描绘这种振动与流动现象。

原子空间由于电子以太旋涡的连珠作用,导致原子以太旋涡产生周期性能量传递,就是红外线、可见光、紫外线之类的以太纵波。科学界所谓的“电子轨道跃迁发光”,实质是这种电子连珠后的振动波的可见光形态,被科学界错判为“电磁振荡传递的波”。这些红外线、可见光、紫外线等等,也是原子振动波的一种特殊类型。

一个细胞,在原子时空尺度,在当下的生命科学理论里,可直观理解的最小结构单元就是元素原子,其实是原子以太旋涡。当原子以太旋涡以游离态处于细胞内部空间时,就是离子。离子=原子以太旋涡游离态,对应的是耦合态的以太旋涡,即分子以太旋涡。如化学式表达下的阳离子与阴离子Na+、K+、H+、Cl-,等等,都是这种原子空间波流一体的运动结构形态存在于细胞内部的。离子应内部电子连珠的周期性出现,表达出最强的以太涡流的偏向性,即极性。

以此类推,可知以原子以太旋涡为基础单元向上构建出的不同时空尺度的万物,如分子空间结构、细胞空间结构、人体空间结构,皆是如此振动形态。本章节对分子与细胞空间的振动形态及以太旋涡结构作一一简单介绍。