全息原理

在全息摄影技术构架中,由分束镜将一束激光分成两束光线,其中一束光线照射在要被摄影的物体上,反射时由于物体表面对光能量的吸收不同,从而光强度发生变化,表达为反射后的光携带物体的影像信息,是为物束光,另一束光为参考光。在物束光与参考光的干涉区域放一张感光胶片,胶片上就能得到物体的全息影像,即胶片的每一个微小局部区域都包含物体的整个影像信息。

由于西方科学界并没有认识到光作为以太纵波的本质,因此虽然在现实应用上发现了全息摄影技术,但并没有正确解构全息原理的内在物质作用机制,只是笼统地归于光的干涉作用。由光与波的干涉场涡形态可以来诠释这一技术构架的原理。

物束光与参考光是相同频率,不同方向的两束光波,相遇时会发生干涉。在干涉区,两束光相遇的每一个波长片断都会形成干涉场涡,这些场涡驱动空间以太形成旋涡,以太旋涡之间再融合形成一个整体覆盖整个干涉区域的大旋涡,并承载着一个大场涡,两者波流一体。场涡是一种螺旋圆周收敛形态的波传递运动,传递时的部分振动能量被禁锢在干涉区域里,而振动能量的强度变化表达为信息,如此物束光携带的物体影像信息也被禁锢在这一干涉区域里。随着这个大场涡的流转,整个物体影像的各个细节信息随之分布在整个干涉区域空间。

物体的影像精度由波长与频率与约束,每一个波峰与波谷构成的波长片断,都记录一次物体的影像信息,在一个时空区域,记录多少次物体的影像,由这个时空区域的跨度决定,比如,这个跨度是十个波长,那么就有十次物体的影像信息,这个跨度有一百个波长,那么就有一百次物体的影像信息。随着物束光与参考光每个波长片断的不断干涉,就如老唱片机的磁碟轨道将磁头的磁变化信息记录下来,这个干涉场涡持续地记录物束光每一次波动变化时携带的物体影像信息。当这个大场涡运动形态投射在感光胶片上,胶片上的每一小块区域,都包含整个物体影像的全部信息,从而获得全息胶片。这就是全息原理的内在物质作用机制。

这个全息原理在影像摄取的应用于就是全息影像技术,当下的全息技术一般指三维投影技术,与这里描绘的全息原理所指向的摄影技术不同。