运动成因·御波而行

在“牛顿第一定律之修正”小节中,修正了牛顿第一定律,指出由于不同时空尺度下圆周运动的存在,客观世界的万物随时处于运动状态改变中,不存在匀速直线运动与静止这么一种状态,匀速直线运动与静止是意识相对于物体时的关系,是一种感觉。虽然如此,由于牛顿定律构建的模型是理想模型,如有质量没有体积的质点,没有摩擦力及其它外力影响的环境等等,并由牛顿第一定律描绘为“任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。”因此可以问:若一个物体处于这么一个理想世界里,也即一个物体在没有圆周运动的时空环境下,没有外力改变其状态时,以太旋涡理论下又是如何描绘这个物体的状态的?

要理解这个问题,可以先构建一个普通的理想实验:

观察者:定义所有实验状态
环境:平直以太空间,即这空间里的以太不处于旋涡之中,也不流动,如空气一般静止,这状态由观察者定义
物体:质量为m,初始速度为0,有一定空间体积V
外力:F,
作用时间:t

如此,按牛顿第二定律可知,这个物体会获得速度V=at。按牛顿第一定律的表述,这个物体在外力撤消之后,将会一直保持速度V。显然,牛顿并没有解释这个物体会一直保持这一速度V的原因,只是通过客观世界中地表环境的局部空间里,粗略地用实验现象来证明,这是在用表象来证明这一定律,其实并没有证明。这里面的逻辑是:我描绘“物体将会一直保持速度V”,你也看到“物体的确一直保持速度V”,于是我的定律是对的。

问:牛顿力学下,物体一直保持速度V的内在机制是什么?

对于这个问题,一般是用惯性来解释:由于存在惯性,于是物体一直保持速度V。而问惯性成因是什么?惯性为何会导致物体保持速度V而不是以其它运动状态来前进?对此,牛顿及西方科学界就无能为力了,人们只是相信牛顿第一定律成立,也止于相信而已,这叫知其然而不知其所以然。有人说“物理只研究物体是这样的,不研究物体为什么是这样的”,这其实是逃避的方式。物理研究,不止要发现物体“是这样的”,还必须理解物体“为什么是这样的”,才叫知根知底,方为物理:物之道理。

问一:以太旋涡理论下又是如何解析这个外力F撤消时,物体获得V之后的状态?

曾在“惯性成因”小节里以太旋涡理论下的物体惯性成因,在于一个物体内部存在一个内生大场涡。这是物体内部原子以太旋涡之间由于热运动而产生相互间的波传递,进而转化融合成为一个内生大场涡。这个内生大场涡时空尺度以下,有无数不同时空尺度的小场涡、微场涡在内生大场涡的轨道上流转,这一场景在“圆满状态”小节中描绘过。

当一个外力F作用在一个质量为m的物体上,经过时间t后撤消,物体获得速度V,这一过程中,外力在物体内部空间整体产生一个场涡,是为外生场涡,局部表现为波动。如此,在物体内部,就存在两个不同状态的场涡:内生场涡,与外生场涡。当外力撤消后,这个外生场涡,并不是凭空消失,还会存在于物体内部空间。于是物体内部空间,存在外生场涡与内生场涡之间相互融合的过程。

问二:那又如何来描绘这一外生、内生场涡的融合过程?

这两个问题是同一力F作用并撤消后,对物体作用影响的不同场景描绘与解释。这里可以构建另一个牛顿力学实验构架,来同时回答这两个问题:

观察者:定义所有实验状态
环境:平直以太空间,即这空间里的以太不处于旋涡之中,也不流动,如空气一般静止,这状态由观察者定义
小球A:质量为m,初始速度为0,有一定空间体积V
小球B:质量为m,初始速度为0,有与A一样的空间体积V
A与B之间,通过一条弹簧来连接固定并连接,弹簧质量是0
外力:F,
作用时间:t

外力F作用在小球A上,小球A就会向前运动,并压缩弹簧形成弹性势能,尔后弹性势能传递到小球B,于是小球B也开始运动。经过作用距离S后外力F撤消,于是小球A与小球B及中间的弹簧,获得速度V,及弹性势能E0。

在外力F撤消后,弹簧由于没有外力与加速度的影响,会有向两边扩张趋向,表现为对小球A产生阻挡作用,对小球B产生推进作用,于是弹性势能转换为小球A与小球B的动能与负动能,直到弹性势能为0,表现为小球A速度减至最低Va1,小球B速度增至最高Vb1,有:

Vb1 > V > Va1

由于小球B速度大于小球A,于是小球A与小球B的距离增加,导致弹簧被拉长,小球B的部分动能转化为弹簧弹性势能,并有向中心收缩趋向,作用在小球A上,表现为小球A速度增至最高Aa2,小球B速度减至最低Vb2,有

Vb2 < V < Va2

如此,由这两个小球及弹簧构成的运动实验构架里,在外力撤消后小球A与小球B的速度状态与弹簧势能的作用形态是:

小球A速度在Va1-V-Va2之间来回摆动
小球B速度在Vb1-V-Vb2之间来回摆动
弹簧势能在-max(E0)-0-max(E0)之间来回摆动

设一个反复周期是4⊿t,于是可以看到整个A、B双球结构,是以4⊿t为周期的A球向前通过弹簧推动B球,B球向前通过弹簧拉动A球的一舒一缩的前进过程,同时弹簧一舒一缩表达为波动。

将这小球A与小球B换成两个相互处于耦合状态的原子以太旋涡,两个原子以太旋涡整体构成一个分子以太旋涡,有受外力并撤消后,则有相同的场景分析。其中涡管相吸下的耦合结构及范德华力的吸引与排斥作用与弹簧的伸缩有类似的作用形态:处于一舒一缩的状态,一个作用周期是4⊿t。

而一个普通物体,是由无数的原子以太旋涡通过耦合结构与范德华力相互结合在一起,是无数分子以太旋涡的堆积体,当这个物体受到外力作用时,其局部的原子以太旋涡耦合结构会有与小球A与小球B通过弹簧连接时的速度状态与弹性势能形态,这个速度状态与势能形态,在物体整体上,表现为在物体空间里的运动线程上的来回波动。

如此,一个物体运动在外力撤消后,在原子时空尺度,借助共价键与范德华力的链接,是前端的原子以太旋涡牵引后端的原子以太旋涡向前运动,后端的原子以太旋涡推动前端的原子以太旋涡向前运动,如此反复,在宏观上就表达为整个物体一直向前运动。这一牵引-推动的反复过程,表达为物体内部的纵波传递,在宏观上就表达为整个物体是在纵波作用下漂移运动,这就是御波而行。

而原子以太旋涡只是原子时空尺度的以太运动描绘,上面这一牵引-推动的反复过程在其它时空尺度都是相同的原理描绘,这一纵波形态描绘可以扩展到以太层次,也即以太纵波牵引物体作出运动,这就是运动成因。

这也是运动物体的波流一体形态描绘。

由以上描绘也可知:纵波速度v=物体速度V

现实生活中,人的左右脚反复交换跨步推进人向前行,这是一个波动推进人体运动的例子,又如汽车的四轮子周期性旋转推进汽车前行,也是一个波动推进车体运动的例子,其它如蛇的扭曲身体推进,蚂蚁六肢交替前行,划龙舟时浆叶反复作用于水推进龙舟运动,都是一个波动推进物体运动的直观例子。不直观的如空气波动推进云片前行,以太波动推动万物前行。

而所有波传递,都会产生场涡,这个外力作用时,除了在物体内部产生纵波传递外,还伴随外生场涡在物体内部空间流转。而物体内部存在一个内生场涡,于是在物体内部空间,也存在内生场涡与外生场涡相互融合的过程,这一融合过程作用于整个物体,表现为物体有旋转趋向。

内生、外生场涡融合过程中对物体整体的旋转作用,也是一个御波而行的过程。相对于纵波作用下的物体御波而行过程,一个是直行运动状态,一个是周行运动状态,两个状态同时存在于一个受力后的物体上,现实中具体表达由物体与周边环境的关系来展现哪一种状态占主导地位而让人们去描绘。

内生、外生场涡的融合过程,还会导致物体产生进动现象,进动是由于两个场涡的涡面通常不在同一绝对平面上,进而对物体旋转面产生此高彼低的如跷跷板般的上下起伏的作用形态,在整体场涡的轴方向上表现为进动,这里就不再详细描绘。

若物体是处于悬空自由状态,就表现为一边向前运动,一边作旋转运动,比如日常中随手扔出去一块石头的运动状态就是这样子。当然,西方科学界会说旋转是由于存在力矩作用,这是将结果当成因的本末倒置的说法--力矩是一种运动之后的结果状态测定与数学计量描绘,非运动状态改变的起因。随着物体运动持续,纵波逐渐转换为外生场涡,表达为物体速度减慢,旋转加快,最终就是物体停止向前运动,转轴与物体外空间以太相对静止,外生场涡与内生场涡完全融合达到圆满状态成为新内生场涡,宏观上表达为外力所作的功全部转化为物体的角动量。

这就是以太旋涡理论下的物体在理想条件下获得V之后的状态描绘。