中心粒波流一体

中心体是动物或低等植物细胞中一种重要的无膜结构的细胞器,存在于动物及低等植物细胞中。每个中心体主要含有两个中心粒。现代科学里,中心体与中心粒被认为是细胞分裂时内部活动的中心。高中《生物》对“中心体和中心粒”是这样描述的:“动物细胞和低等植物细胞中都有中心体。它总是位于细胞核附近的细胞质中,接近于细胞的中心,因此叫中心体。在电子显微镜下可以看到,每个中心体含有两个中心粒,这两个中心粒相互垂直排列。中心体与细胞的有丝分裂有关。”

科学界对万物及生命的运动机制认知只停留在光与影的场面,导致认为中心体是细胞分裂时内部活动的中心,是非常粗浅与片面的。中心体不止在细胞分裂中处于主导地位,且在整个细胞生命活动周期中,也充当非常重要的控制中心,甚至决定细胞核仁形成与RNA、DNA的排序,是基因表达的决定性因素,会在后面基因原理章节论述。这仍是要先认识中心体在以太理论下的另类运动机制说起:中心粒与中心体的振动力场与流动力场,即中心粒、中心体的波流一体形态。

中心粒的波流一体形态,分两种能量振动与物质流转模式,一是孤立态,一是环境态。孤立态,即中心粒处于完全孤立的状态下,其周边环境是平直稳定状态时,其能量振动与物质流转形态完全受中心粒自身结构约束的状态。环境态,即中心粒处于某个特定环境之中,其周边环境是不稳定状态时,其能量振动与物质流转形态受自身结构与环境因素综合约束的状态。

一、孤立态

每个中心体含有两个中心粒,在光学与电子显微镜下,人们观察到中心粒的特定结构。中心粒,由各相关元素原子以太旋涡通过两种耦合方式及范德华力,形成一个有九组三微管排列的有序空间结构。由于管状结构,使得中心粒成为一个共鸣腔,可以接收外界的与管空间尺度相适应的能量波动变化,并在内部产生相近频率的共振现象,即驻波作用。外界的能量振动包括细胞膜内外空间的所有能量作用形态,如热运动、可见光、机械波、电磁波,等等。这些能量作用形态的源头,可以是细胞内部的各个器官单元,如中心粒本身、细胞核、线粒体,等等。也可以是细胞外部的其它能产生振动波的各种结构与环境,对人体来说,如心脏产生振动波,大脑产生电神经脉冲,其它细胞活动产生体温,肝脏、血液产生特定气味,等等。还可以是生命体外的环境变化,如气候变化产生温差,阳光月光,风声雨声,水温水汽,甚至地球磁场影响,等等。

不同的能量作用形态,对应不同的波动频率,不同大小的中心粒,也对应不同的波动频率共鸣腔结构,两者相互结合后就会在微管内产生相应的驻波形态。这个作用过程,就如乐器排箫、笛子受气流作用或外界声音振动而产生驻波形态,即共鸣现象,并发出高强度特定频率的声波与音符,后成为美妙音乐一般。在微观细胞空间的中心粒上,也存在这种相近的驻波形态与能量共振作用。自然,这种物质作用形态是不可能通过光学与电子显微镜能观察到的,但可以通过以太波的一般属性与物质空间结构原理简单认识到。中心粒的这种共鸣腔作用认识,是现代生命科学里没有的。

由于原子以太旋涡存在周期性的电子连珠运动与杂乱的热运动,对于众多原子耦合形成的中心粒来说,天然地在其周边空间存在向四周发散特定频率与强度的振动波,这是中心粒自发性发光的波动与热运动过程。而微管结构的共振作用强化了这一自发性发光波动与热运动过程。同时应波的谐振作用,让中心粒自发性发光波动与热运动时产生的振动波上,也承载了这共振动时外界波振动频率,从而成为调频波,这也是中心粒的受激性发光的波动与热运动过程。

中心粒九组微管束具有几近相同的腔体结构,并处于平行分布与环绕排列状态,具有极高有序性,让中心粒产生共振后向外发散的调频波再次发生强干涉与多方位作用。如此管腔结构带来共振,有序性带来干涉,外界波动带来调频波,让中心粒向外传递达细胞中最强的振动波,犹如九个绑在一起同时吹响的哨子,整体如一只点亮的白炽灯泡或小太阳,对周边空间发生强声波、光波能量辐射。中心粒之于细胞内部空间,就如太阳之于地球。

中心粒振动能量向细胞内部空间发散后,其波动强度的梯度分布表达为振动力场,振动力场形成在以太空间传递产生螺旋收敛形态传递,细胞膜空间封闭结构的约束与反射作用加速了这一进程,尔后形成中心粒场涡,最后场涡牵引细胞内部空间以太运动,形成中心粒以太旋涡。中心粒以太旋涡的力场就是中心粒以太流场。

由中心粒这种结构与振动形态可知,中心粒的振动力场要远远大于流动力场。中心粒的振动力场与流动力场,在所有细胞器之中,也是最高的。即:

振动力场>>流动力场

中心粒除了产生强振动力场与以太流场外,同样由于其整体的圆柱形结构,及以太旋涡的约束,会对整体的振动力场产生定向约束作用,导致振动力场与以太流场的空间分布形态不是一个中心等距的球形发散及梯度衰减形态,其振动波分布有两端强边侧弱,边侧中间平面又相对强的辐射特点。两端的轴辐射,有更明显的强波动特征。这就如将一个原子核从球形拉成圆柱形,其振动力场与以太流场也会有相对应的空间分布变化。

同时,由于中心粒内部的众多原子以太旋涡之间相互振动,在中心粒的中间平面区域,产生以太喷流,驱动中心粒绕中心轴作自转运动,这与地球自转有完全一样的作用机制。如此,中心粒一边自转,一边向四周辐射能量振动,驱动其周边空间以太形成旋涡,是为中心粒波流一体。中心粒的这一能量振动与物质流转过程,与原子、星系有几近一样的运动模式,可以对比:

中心粒波流一体——原子以太旋涡、星系以太旋涡
中心粒轴振动——原子核、星球星系轴辐射
中心粒中间区域振动与以太喷流——原子核、星球赤道面星系黄道面以太振动与以太喷流

 

中心粒,就是一个圆柱形的原子核或星球,中心粒波流一体,就是一个原子、星系,这就是全息。中心粒这种能量振动与物质流转,会严重影响其它细胞组织结构的分布形态,对细胞生命活动起着决定性的作用,是中心粒发挥功能的核心作用方式,在细胞内部空间,其功能就如太阳处于太阳系的作用,会在后面继续论述。

二、环境态

以上是关于一个中心粒作为孤立自由形态时,即就一个孤立中心粒的振动力场与以太流场描绘。

但细胞内部的中心粒,是处于一个复杂的生命体环境之中,在宇观、宏观、微观各个时空尺度,其周边环境的以太流动与振动都随时随地存在频率、强度、方向上的变化,同时生命体与细胞的空间结构,也在约束、反射中心粒的振动波传递,从而对中心粒的振动力场与以太流场产生三种影响状态:决定性影响,重要影响,可以忽略。前两种影响对中心粒在孤立态下有略为不同的振动力场及以太流场描绘。决定性影响主要体现在中心粒复制过程之中,会在后面“中心粒复制”小节专门论述,这里暂且不表。可以忽略状态就是上面小节的纯粹中心粒的一般振动力场与流动力场形态。这里主要描绘环境作为重要影响因素,对中心粒振动力场与流动力场形态干扰后的描绘。

环境即复杂以太空间,存在一个大场涡,大场涡驱动空间以太形成大以太旋涡与强以太振动力场,在局部区域会有能量振动方向与以太流动的单一指向性。如此环境大场涡会对中心粒的场涡产生干扰,进而对中心粒振动力场与流动力场产生形变,表达为中心粒波流一体形态出现偏折偏向,类似于河水弯曲流动、光线折射反射这样的运动形式。应中心粒的方位状态与环境以太旋涡的振动、流动方向的对比,主要分两种模式:

一是中心粒的中心轴与环境大以太旋涡振动方向平行

如此中心粒靠近大场涡涡心的一端,简称近端,其振动力场与大场涡形成的环境大以太旋涡振动力场几近完全相反并对冲。在两个力场的平衡面,中心粒近端向外发散的部分振动波会向两侧分离并偏折,这种偏折达到360度,就形成两个相互对称的次生场涡。这两个相互对称的次生场涡驱动空间以太,形成两个相互对称的次生以太旋涡。这次生以太旋涡有完整的涡管、涡盘面等结构。

中心粒背离大场涡涡心的一端,简称远端,其振动力场与大场涡形成的环境大以太旋涡振动力场几近完全一致,于是两个振动力场相互叠加强化,从而让中心粒远端的振动力场的强度更高,其影响的距离也大大增强。与振动力场对应的以太流场也作用距离变长,及以太涡管也大大变长。

中心粒中间平面的振动力场,则与环境大以太旋涡振动力场垂直,也受其作用而向远端偏向,整体如撑开的雨伞伞面向下弯折一般。

当环境中存在两个大场涡形成的振动力场分布在中心粒两端时,会让中心粒两端的振动波都形成场涡,继而形成对应形变的以太旋涡。这样一个中心粒周边空间,除了原中心粒以太旋涡之外,还有四个次生以太旋涡。其它如三个或更多个大场涡围绕中心粒四周,大场涡之间又分大小、强弱,都会对中心粒这振动力场产生相应的对冲、相合作用,产生的次生以太旋涡也有大小、强弱之分。这些作用都是上面中心粒近端、远端的一个特例,作用过程一致,就不继续说明。

平行中心粒两端及中心平面的振动力场如此被一阻一推一弯,形成一个以中心粒为核心的,剖面如“蜻蜓”型的场涡形态,进而形成对应的形变以太旋涡。这个形变以太旋涡,可以约束其它分子、原子旋涡在其涡流轨道上流转,是生命体、细胞形成特定空间结构的物质作用基础。

二是中心粒的中心轴与环境大场涡振动方向垂直

如此中心粒的两端向外扩散的振动力场,都会与环境以太旋涡的振动力场垂直相交并对冲,从而向背离环境以太旋涡振动力场的方向偏折,对应的中心粒以太涡管也同时被弯曲。由于中心粒两侧以太涡管外围的以太涡流方向相同,当以太涡管弯曲到90度极致后,即与中心粒的中心轴平行,两侧涡管应以太合流产生耦合作用,即涡管进一步弯曲并相互吸引闭合,形成一个圆柱环,这一过程就如将一条铁丝弯曲成圆环,让两头闭合一般。在这个闭合的以太涡管内,中心粒两端向外发散的振动波在涡管内传递。

中心粒中心平面与环境振动力场方向平行,存在360度方向上的交合。平面上靠近环境大场涡涡心的一侧,简称为近侧,其相反方向的振动力场会如上面平行中心粒的近端一般被挤压并向两侧弯曲,分布范围窄。平面上垂直方向的振动力场会如上面平行中心粒的两侧一般被向远环境场涡涡心方向弯曲。平面上相同方向上的振动力场会如上面平行中心粒的远端一般被强化,分布范围更广。

中心粒两侧这种涡管闭合,会约束中心平面远侧被强化的振动波,在中心粒远侧外围形成次生场涡,继而形成次生以太旋涡。而中心粒闭合涡管内部的振动波是两端相反方向传递,会在闭合环的中间位置产生对冲作用并形成另一个场涡,这是一个小场涡。

垂直中心粒两端的振动力场如此同时被向一侧偏折,形成一个以中心粒为核心的倒“U”字或“O”字型场涡形态,连同中心平面的振动力场被环境振动力场360度方向上的作用,进而形成对应的形变以太旋涡。

其它如中心粒轴方向与环境振动力场方向斜相交,也会产生相应的中心粒以太波流一体形变,是上面平行与垂直两种方式的泛例。另外上面两种环境态下的中心粒,应其与环境以太涡流间的相冲相合作用,都有沿环境振动力场方向移动的趋势,就都不详细描绘与图示了。

细胞结构简介

细胞是生物体基本的结构和功能单元,最早通过光学显微镜被发现,后来通过电子显微镜观察到其更高精度的亚显微结构。这里对其一般结构作个简单介绍,作为后面全新描绘与论述的参考,更详细丰富的细胞结构及相关发现历史等知识,读者可以自行翻阅相关书籍。

现代生命科学理论里,细胞被分真核细胞与原核细胞。

真核细胞结构主体,分细胞核、细胞质、细胞器、细胞膜。细胞器又分线粒体、叶绿体、内质网、高尔基体、核糖体、中心体、液泡、溶酶体、微丝微管等等。这些细胞器有不同的亚显微结构,可以完成特定的功能,是细胞生命活动的重要单元。细胞核又分核膜、染色质、核液和核仁四部分,是存储遗传物质,控制细胞内部生化合成和代谢,决定细胞或生命体的性状表现的重要结构。

原核细胞是组成原核生物的细胞,没有核膜且不进行有丝分裂、减数分裂、无丝分裂的细胞。其主要特征是没有以核膜为界的细胞核,也没有相应的核仁,只有拟核。细胞器只有核糖体,有细胞膜,成分与真核细胞有所不同,且细胞体积较小,没有染色体,DNA不与蛋白质结合。在生物学界被认为是进化地位较低的细胞形态。

无论是光学显微镜还是电子显微镜,虽然对发现细胞细微结构做出重大贡献,并拓展了人们对生命基本单元的直观认识,但处于显微镜精度阀值之下的更精微的运动形态却是这些现代仪器也捉襟见肘的,这就是科学仪器的弊端:依赖仪器得到表象描绘,又被仪器精度所制约无法更深入认识。借现代技术制造出更高精度的仪器虽能不断探究生命物质更细腻的结构,但更高精度最终会达到人类制造能力的极限,如此科学发展就举步维艰,这也是当下生命科学认知虽然在电子显微镜下得到更好的发展,却也是人类对基因控制、癌症治疗等核心问题无法根本认识与解决的根源。

要认识生命科学,特别是细胞层面及以下精度的物质运动机制,是不能完全依赖西方科学这种停留在光与影表象下的观察与分析,而是必须要借用东方易道思想来完善这一认知过程。这种东方易道思想的核心原则“道生一,一生二,二生三,三生万物”,用现代话说就是物质是一元的,物质是运动的,人们观察到的只是表象而非实质。这核心原则是通过以太波流一体概念来解析解构细胞层面及以下精度未被现代科学所认识的物质运动形态与作用机制,如此来基本解决现代生命科学关于细胞复制、基因表达、癌症机理与治理等等相关的问题。

由于本书是以以太论下的全新机制来论述细胞与生命运动形态,因此会大量引用经典生命科学的理论与概念,以用作批判及否定的参照,在于西方生命科学的基础理论大多是错的,但对实验室中光学显微镜与电子显微镜能观察到的细胞结构与生命现象描绘则完全保留,在于实验观察现象则是客观的。同时也会保留诸多化学物质的分子式,但否定其分子结构式,在于分子式其实是化学物质中的成分原子比例关系,可以通过实验室分解反应在宏观上检测到各原子在分子中的比例,但分子结构式则是在这成分与比例的关系上,结合经典共价键概念与泡利不相容原理而人为想象并构建出来的,经典共价键概念与泡利不相容原理在以太旋涡理论里都是否定的概念,因此经典分子结构式也是一个否定概念。以太旋涡理论下有全新的原子模型,原子以太旋涡之间的共价键也有新的内涵解析,并带来全新的分子结构模式。

下面先通过各细胞器的以太波流一体描绘来展开说明,首先从最重要的中心体与中心粒的未被现代科学发现的能量振动与物质流动形态说起。

RNA分子以太旋涡

核糖核苷酸分子通过耦合作用形成长链大分子结构,就是核糖核酸分子,简写为RNA,与脱氧核糖核酸DNA一起,在现代生命科学里被认为是遗传物质,这个认识是错误的,会在后续基因原理章节来解析遗传的具体过程,这里只描绘糖核苷酸分子构成RNA时的结构形态。这是通过水合磷酸分子的主体耦合作用结合在一起,并继续耦合核糖分子、碱基分子形成长链大分子结构来实现的。

水合磷酸分子除了与核糖分子、碱基分子通过耦合形态形成核糖核苷酸分子之外,其自身分子之间,也存在两种耦合形态,分别是同旋异极吸附作用与范德华力吸附作用。

1、水合磷酸分子同旋异极吸附作用

水合磷酸分子的同旋异极吸附作用,就是数量众多、相同旋转方向的水合磷酸分子以太旋涡,其涡轴重合,涡心在同一条线上,彼此通过相互间的异极吸附作用,耦合形成一条长链大分子形态。尔后同样数量众多的核糖分子、碱基分子通过范德华力吸附在这条长链的边侧或顶端,形成一条核糖核苷酸长链分子,是为核糖核酸RNA的单链结构形态,周边空间存在次生以太旋涡,及相应的振动力场与流动力场。

单链RNA结构形态,又应其链上核糖核苷酸分子数量的多寡,分为长链RNA与短链RNA。长链RNA就是其分子链上的核糖核苷酸分子数量相对很多,可以是成千上万个不等,短链RNA就是其分子链上的核糖核苷酸分子数量相对要少,可以是几个几十个不等。

2、水合磷酸分子范德华力吸附作用

水合磷酸分子范德华力吸附作用,就是两条旋转方向不同的长链水合磷酸分子,其中一条长链分子的端点,通过范德华力作用,吸附在另一条长链分子的边侧,形成耦合结构形态。尔后核糖分子、碱基分子通过范德华力吸附在这两条水合磷酸分子长链的边侧或顶端,形成一条核糖核苷酸双链分子。如此吸附作用下,前一条RNA构成后一条RNA的分叉结构,如树枝树根的分叉形态,形成一条带分叉结构的核糖核苷酸长链分子,周边空间存在次生以太旋涡,及相应的振动力场与流动力场。

分叉结构RNA又可分为多分叉结构RNA,与少分叉结构RNA。多分叉结构RNA,就是其分子链上的分叉数量要多,相应RNA片段数量要多,可以有几十上百个分叉;少分叉结构RN就是其分子链上的分叉数量要少,相应的RNA片段数量要少,可以有几个十几个分叉。

由于在同一分子中,范德华力的吸附作用要小于同旋异极吸附作用,因此这种分叉结构形态下的RNA的稳定性要小于单链结构下的RNA,因外界的振动力场与流动力学场干扰而相对容易地分解为单链结构下的RNA片段。

RNA这种长链分子结构并不是天然地由水合磷酸分子携带核糖分子、碱基分子以随机组合的方式再通过共价键耦合作用及范德华力吸引形成的,而是被一种特定的物质作用所约束与规范,才呈现对应结构状态,甚至包括长链分子的长短、核糖分子、碱基分子在长链分子上的分布规律也都是如此被约束与规范,会在基因原理中详细阐述。

由于RNA的振动力场与流动力场,只是其基础单元核糖核苷酸分子的振动力场与流动力场叠加后的效果,因此两种力场的对比是同核糖核苷酸分子的振动力场与流动力场对比结果是一致的,即:

流动力场>>振动力场

脂类分子以太旋涡

同糖类相似,脂类也是生命体的重要组成要素之一,是细胞组织的重要组成成分,在此做一番以太旋涡理论下的结构简单说明,更多机理会在后面章节阐述。脂类是油、脂肪、类脂的总称。包括油脂(甘油三酯)和类脂(磷脂、固醇类)。食物中的油脂主要是油、脂肪,一般把常温下是液体的称作油,而把常温下是固体的称作脂肪。

以甘油三酯为例。现代科学认识里,甘油三酯作为一种有机化合物,被认为是由甘油的3个羟基与3个脂肪酸分子酯化生成的甘油酯。为非极性物质,以非水合形式贮存于体内,是体内储量最大和产能最多的能源物质。植物性三酰甘油多为油,动物性三酰甘油多为脂。固、液态的三酰甘油统称为油脂。

关于甘油三酯的结构,以太论下另有理解,从甘油分子以太旋涡的结构解析说起。

甘油就是丙三醇,为有机化合物,化学式为C3H8O3,物理性质是无色无臭透明黏稠液体,有甘甜味,能从空气中吸收水气,也能吸收硫化氢、氰化氢和二氧化硫,与水和醇类、胺类、酚类以任何比例混溶,不溶于苯、氯仿、四氯化碳、二硫化碳、石油醚和油类,主要用作有机化工原料,也可用作分析试剂和润滑性泻药。

以太论下,甘油的结构式是(CH2·OH)2·(CH·OH)。即先3个O与3个H耦合成3个OH,及2个C与4个耦合成2个CH2,1个C与1个H耦合成1个CH;再2个CH2与个2个OH耦合成2个(CH2·OH),及1个CH与1个OH耦合成1个(CH·OH);最后2个(CH2·OH)与1个(CH·OH)耦合成1 个(CH2·OH)2·(CH·OH)。

甘油分子是一个(CH·OH)与两个(CH2·OH)在同一平面上通过范德华力作用耦合在一起及互绕的次生以太旋涡结构,其中的H原子以太旋涡,仍只是作为C、O的“远核大电子”形态存在,强化C、O以太旋涡的偏向性,极限偏向状态如一枚三叶草,并对外界表达出相应次生以太旋涡的振动力场与流动力场形态。

可以发现甘油中带一个(CH·OH)离子以太旋涡,这与糖类分子的基础结构特征一样,(CH·OH)发出对应振动波,具有类似糖分子的味觉信号,这也是甘油具有甘甜味并被命名的原因。而甘油中另含有两个(CH2·OH)离子以太旋涡,这(CH2·OH)中的CH2,其中的碳原子由于携带两个氢原子以太旋涡成为其“远核外大电子”,强化了碳原子的活跃性,让CH2成为“连珠频率中,偏向高,角动量高”的次生以太旋涡,这两个离子以太旋涡也存在OH离子以太旋涡,形成(CH2·OH)耦合结构,其离子以太旋涡有大范围的流动力场,结合(CH·OH)的流动力场,如此多以太流动力场的叠加,让甘油分子具有作用更广泛的流动力场,从而让甘油分子有很强的吸附性,在宏观上表现有很强的粘性、吸水性,并类似于糖浆。其中(CH2·OH)是脂类的结构特征,即

脂类分子的结构特征之一是含两个(CH2·OH)离子以太旋涡

(CH2·OH)离子以太旋涡,可以称为脂基。

甘油三脂的另一个大单元是脂肪酸。脂肪酸是由碳、氢、氧三种元素组成的一类有机化合物,是中性脂肪、磷脂和糖脂的主要成分。现代科学根据分子内部碳链长度的不同又可将其分为:短链脂肪酸、中链脂肪酸、长链脂肪酸。三者碳链上的碳原子数分别是小于6,6—12,大于12。脂肪酸又可根据碳氢链饱和与不饱和的不同分为3类,即饱和脂肪酸,单不饱和脂肪酸,多不饱和脂肪酸,这些知识可以参考生物学书本描绘,这里不再赘述。

脂肪酸种类繁多,其实只是多个丙三醇分子通过化合脱水后,其碳原子通过多原子以太旋涡之间的耦合作用而得,其化合反应式是

n[(CH2·OH)2·(CH·OH)] = (CH2)a·(CH2·OH)2·(CH)b +(H2O)c+X

反向的分解反应式为:

(CH2)a·(CH2·OH)2·(CH)b +(H2O)c = n[(CH2·OH)2·(CH·OH)] +Y

其中n、a、b、c为自然数,n>c>a>b,X、Y为附加生成物。

脂类碳链上的各个碳原子,都带有两个氢原子,让碳原子从原来的“连珠频率低,偏向低,角动量高”的原子以太旋涡,转变成“连珠频率中,偏向高,角动量高”的次生以太旋涡,这种CH2耦合结构下的碳原子活跃性,比CH耦合结构下的碳原子活跃性,还要高一个强度层次,导致如此耦合结构下的碳链,有更大范围的次生以太旋涡流动力场。碳链应碳原子间的范德华力作用,或形成环状结构,或形成富勒烯结构,让脂肪酸有相对强的稳定性,使其不能被水溶解,整个分子以太旋涡空间又类似于一个空泡,在宏观上使得其密度比水轻而能浮在水面。脂类分子的振动力场与流动力场对比是:

流动力场 >> 振动力场

甘油三脂分子并不是甘油分子与脂肪酸分子通过脂化反应的结构,而是甘油分子作为脂类的最小单元,在脂类的分解反应中,脂类分子与水分子中的OH结合后,再水解形成甘油的主体结构(CH2·OH)、(CH·OH)离子以太旋涡及长碳链(CH2)n,这两种离子以太旋涡再通过范德华力耦合成甘油分子。

甘油(丙三醇)之于脂类,就如氨基酸之于蛋白质。

而长碳链(CH2)n,又作CH2·CH2·CH2……CH2,其两端以太旋涡涡口,可以各吸引一个水分子中OH,结合形成脂肪酸(CH2·OH)·(CH2)n-m·(CH2·OH),这也是脂肪酸通常含两个(CH2·OH)的物质作用机制,人们发现众多脂肪酸的分子中都有两个氧原子,如油酸是C18H34O2,亚油酸是C18H32O2,亚麻酸是C18H30O2,等等,不明就里,就是这个原因导致。脂肪酸只是这一反应的某一阶段的产物,被当成脂类的结构单元之一。长链脂肪酸可以继续水解形成甘油与中链、短链脂肪酸,直到整个碳链全断开并水合形成甘油分子。脂类的整个水解反应如剥洋葱皮,一层一层将CH2从(CH2)n碳链上剥离,CH2再与水分子中的OH、H形成(CH2·OH)、(CH·OH)离子以太旋涡及甘油分子。反之甘油又通过化合反应脱水后形成脂类分子。

脂类分子的结构特征之二是含一条由多个CH2离子以太旋涡耦合成的碳链

脂类在生命活动过程中起着重要的作用,与糖类一样,也被科学界认为是一切生命体维持生命活动所需能量的重要来源,象甘油三酯被认为是“在中、低强度运动中,其分解能提供运动肌肉所需的大部分能量”。这种认识也是错的,脂类不是生命体运动的主要能量来源,而是生命体的主要构架成分之一。

科学界也是根据人体食用脂类之后会发热,提高活力,及脂类独立在外界可以燃烧发光发热,由此断定脂类是作为人体的主要能量来源,与糖类一样,是非常粗浅且错误的结论。人体生命所需的能量,都不是通过糖类、脂类、蛋白质在体内“燃烧”释放能量来获得的,而是直接来自于空气,会在后面“呼吸原理”小节论述。

何以糖类分子中主要存在CH碳链与(CH·OH),而脂类分子中主要存在CH2碳链与(CH2·OH),也即脂类碳链上的碳原子比糖类碳链上的碳原子多一个氢原子呢?这在现代科学里没有专门解释,一般只是说这是基因作用与自然演化的结果。在以太论下,这一现象另有具体的物质作用原理来解析,关键仍是以太振动力场与以太流动力场的对比,会在后面章节说明。