糖类在现代科学认识里,是多羟基醛、多羟基酮以及能水解而生成多羟基醛或多羟基酮的有机化合物,可分为单糖、二糖和多糖等。糖类是自然界中广泛分布的一类重要的有机化合物。包含很多物质形态,如日常食用的蔗糖、粮食中的淀粉、植物体中的纤维素、人体血液中的葡萄糖等等。植物中最重要的糖是淀粉和纤维素,动物细胞中最重要的多糖是糖原。
以葡萄糖为例,葡萄糖的分子式是C6H12O6,以太旋涡理论下,其结构式是(CH·OH)6,即先6个C与6个H形成6个CH,及6个O与6个H形成6个OH,再6个CH与6个OH耦合成6个(CH·OH),最后6个(CH·OH)耦合成一个(CH·OH)6。这是一个环状互绕结构,6个(CH·OH)在同一个平面上互绕。
葡萄糖分子是六个(CH·OH)在同一平面上通过范德华力作用耦合在一起及互绕的次生以太旋涡结构,极限偏向状态如一个六角星,并对外界表达出相应次生以太旋涡的振动力场与流动力场形态。糖类分子的结构特征是存在多个(CH·OH)离子以太旋涡。其它的各类糖分子都是相类似的耦合结构。
可以发现葡萄糖分子以太旋涡的空间结构与核糖分子以太旋涡的空间结构有一样基础单元:(CH·OH)离子以太旋涡,只是葡萄糖分子比核糖分子少一个(CH·OH)。又由于(CH·OH)之间是通过范德华力吸引作用耦合在一起,葡萄糖分子内的(CH·OH)相对距离要大,因此相比较核糖分子而言,更容易受外界振动而导致结构解体。宏观上表现为葡萄糖更容易被肠胃吸收。
糖类分子的结构特征之一是含多个(CH·OH)离子以太旋涡
(CH·OH)离子以太旋涡,可称为糖基。
葡萄糖是多(CH·OH)的环形结构与旋涡运动形态,让葡萄糖次生分子以太旋涡的周边空间存在强流动力场,表达为很强的收敛吸附作用,可以继续相互吸引形成更长的糖链或膜,是其能成为生命体组织结构主要成分的物质作用基础,并在宏观上构成的物质如蔗糖、淀粉溶水后表现上有粘性。其分子以太旋涡的流动力场相对振动力场要强,两者的对比是:
流动力场 >> 振动力场
葡萄糖分子以太旋涡之间,也可以通过同旋异极吸附作用耦合在一起,成为长糖链分子,长糖链分子再通过范德华力吸引互绕,形成诸如蔗糖之类的物质。长糖链分子的周边空间,有相应的次生以太旋涡,及振动力场与流动力场分布。
糖类分子的结构特征之二是含一条或多条由多个CH离子以太旋涡耦合成的碳链
糖类在生命活动过程中起着重要的作用,被科学界认为是一切生命体维持生命活动所需能量的主要来源。这种认识是错的,糖类不是生命体运动、呼吸、思考的主要能量来源,而是生命体的主要构架成分之一。
科学界根据人体食用糖类之后会发热,吃饱后人体有更高活力,及糖类独立在外界可以燃烧发光发热,由此断定糖类是作为人体的主要能量来源,是非常粗浅且错误的结论。让人感觉温暖只是糖类分子以太旋涡在分解与化合过程中,产生红外波段的以太振动传递,从而提升人体温度。糖类在消化过程中能导致人体升温,与人体肌肉运动所需的能量是两码时。人体肌肉运动、思考的能量不是通过糖类在体内“燃烧”释放能量来获得的,而是直接来自于空气,会在后面“呼吸原理”小节论述。