量子隧道效应

隧道效应由微观粒子波动性所确定的量子效应,又称势垒贯穿。“考虑粒子运动遇到一个高于粒子能量的势垒,按照经典力学,粒子是不可能越过势垒的;按照量子力学可以解出除了在势垒处的反射外,还有透过势垒的波函数,这表明在势垒的另一边,粒子具有一定的概率,粒子贯穿势垒。”隧道效应,其实是一种现象观察结果,被冠以量子头衔。

量子隧道效应神乎其技,是在认识不到正确的原子、电子结构,电的真正本质,及量子成因下的一种乱解:由于量子理论很主流,于是所有现象都被套用上“量子”这一概念。量子,是科学界的流行词。

而用波函数来解释,只是一种数学解。所有数学解,都必须还原成物质作用过程,才能在宇宙客观环境中直观展现与理解。而只用数学解来解说物理现象,其实是从直观中抽象,再用抽象结果来解释直观的这么一个本末倒置的行为。于是诸如问波函数与穿越概率是基于什么物质作用形态而产生的?量子力学理论就无能为力。这些概念的诞生,其实都只是为解释而解释的创作,而非客观物质作用如此。

实验中的所谓量子穿越势垒,其实指的是电子之类的微观粒子穿越某种看似不可能的能量壁垒,是电子等微观粒子(以太旋涡)在穿越而非“量子”这一东西在穿越。将电子当成量子,是一种以讹传讹的表述。而所谓势垒,或者说能量壁垒,其实是一种物质运动构成的力场,比如晶体管的PN结,或电容两极间的以太湍流层,极其薄的金属片,都是势垒的一种形态。势垒的形式是力场,本质是特殊形态的物质运动与作用。

在“尖端放电与击穿”小节中描述,科学界所谓阴极射线是电子流,其实是将定向移动的以太湍流当成电子流,同时将电以太振动波当成电荷定向运动,在更基础的原子、电子、电流认识出错后,更不能正确理解量子隧道效应现象。

以太旋涡理论下,另有简单且直观的量子隧道效应现象解释:

在量子隧道效应实验中,阴极射线或电振动波抵达势垒一侧时,振动波传递在势垒一侧受阻,除了被反射之外,还会在势垒上产生纵向以太压力,这以太压力会以波压包的形式在势垒内部传递到势垒另一侧,尔后会在势垒的另一侧外围空间里形成新以太振动波、以太旋涡及以太湍流。这新的能量振动、以太旋涡及以太湍流被仪器检测到特征信号,就是误解形态下的电流或粒子,科学界根据这特征信号误判为一侧的“量子”穿越这能量壁垒抵达另一侧,其实根本没有,这只是能量传递的连锁反应形态。与这连锁反应形态相近的效应很多,比如康恩达效应、光电效应、热电效应,等等。

这一“量子”穿越过程,其实也与棒槌(电子、电振动波)敲打铜锣(势垒)一侧,在铜锣(势垒)另一侧形成声波振动(电流)与空气涡旋(粒子)的原理几近一致,只是过于微观与感官区别,又认识不到以太存在,后在错误的量子理论误导下,概括出所谓的“量子隧道效应”,让人们觉得匪夷所思。

当下物理主流理论是量子力学,于是所有新物理现象都会被冠以“量子”这个万金油概念。通过“量子成因”与“量子理论思想”小节解析,可知量子并不是一个客观实体,而是一种感觉,于是在技术上是不可能依赖量子这么一个虚的概念去构架出实的技术,这也是科学界流传很长时间的量子计量机一直不能现世的原因,本就不存在“量子”这一实体,就不可能构建出非实体的技术。可以预计量子计算机是永不会出现的,任何投入到量子计算机的人力与物力都将会是资源浪费。其它如量子通讯,量子卫星,还有如量子化学,量子生物等等,其实都是同量子无关的技术探索,不过是被研究者冠以“量子”之名,以示自己的研究跟上时代的、先进的。

燃料电池·能量块

当下人们利用石化燃料如汽油燃烧产生气体膨胀来驱动汽车等交通工具前行,除了热能损失很大,还产生大量废气污染,是一种高耗低效的能源使用方式。而用电来驱动,则是非常清洁,但当下的电池技术由于能量密度较低,导致在交通工具上,电的应用没有油汽来得广泛。这里描绘的燃料电池技术原理,是直接将石化燃料转换成电能的技术原理,可以为燃料电池的构架提供指引方向,即将石化燃料直接转换为电能,而非诸如柴油机带动电机的漫长环路及高热能损失过程。这是依赖分子的以太旋涡耦合结构、电解作用、化学电池原理、电的本质、催化剂的作用机制等认识来理解与构建的。

石化燃料如汽油,是以碳基氢键构架的有机大分子结构,一般消耗过程是点燃需要大量的氧气参与及一定高的温度,而后有机大分子结构在高温下解体,再与氧气原子结合产生水与二氧化碳,并于解体与化合过程中释放出化学能。这一燃烧过程中,可用催化剂原子以太旋涡的振动形态来代替燃烧时产生的高温形态。在燃料中加入催化剂后,有机大分子的振动状态会处于与升温类似的高活性状态,再用电振动来强化这一高活性状态,然后有机大分子解体,表现为化学能释放。有机大分子解体成小分子结构后,在催化剂环境里,小分子的振动状态也处于与升温类似的高活性状态,再用电振动来强化这一高活性状态,小分子与氧化剂化合形成氧化物,也表现为化学能释放。引导化学能释放时的振动波,就是电。这就是燃料电池技术原理,亦称能量块技术原理,描绘为一句话就是:

通过电解作用结合催化剂、氧化剂代替当下氧气参与燃烧的高温环境,来促使石化燃料分子以太放涡缓慢温和解体与化合而释放化学能并转换成电。

比如以汽油为例,设汽油有机大分子的耦合结构强度是10个能量单元,需要外界10个以上强度的振动能量单元才能使其开始解体,而日常燃烧的高温状态是20个能量单元强度,汽油大分子结构在20个能量单元的环境下以燃烧的方式解体,表现为剧烈能量振动与强光辐射。而若在常温下加入振动强度是8个单元的催化剂,那么只需外界再额外添加2个能量单元就能使其解体。用2个能量单元强度的电振动来现实这一解体目的,这也是电解过程。如此,汽油大分子结构在10个能量单元的环境下,以温和方式解体并产生弱振动能量,定向约束这振动能量后再传递出去,就是电。

如此控制外界振动强度来解体油汽有机大分子,就不用通过剧烈燃烧来现实化学能释放,并有更低的热能损失与更高化学能-电转换效率外。

催化剂结合下可以通过电解作用直接产生电能的燃料,就是传说中的能量块,在上世纪八十年代的科幻动画片《变形金刚》里有描绘,影片里的场景就是将石化燃料转变成一种叫能量块的紫红色块状固体或液体,可以直接给机械生命体提供驱动能源,当然科幻片里是不会有这种转换原理的。这里取“能量块”这一概念,在于两者所采用主体原材料基本一致,实现目的也基本一致。

这个电解过程导致石化燃料分子解体释放化学能过程,与中子轰击铀产生链式核裂变反应及轻核聚变反应,仍只是时空尺度的不同,过程很相似:

                                     电(振动波)--中子(振动波)
                                     汽油(燃料)--铀(燃料)
                                 电解(波)作用--中子(波)轰击
    燃料分子(次生以太旋涡)解体--铀原子核(更微观以太旋涡)裂变
产生小分子结构(次生以太旋涡)--产生轻元素原子(微观以太旋涡)
                             产生电(振动波)--产生新的中子(振动波)

有机大分子结构解体后形成小分子,再与氧化剂化合,也产生振动,定向引导出去,也表现为电。这与轻核聚变反应也只是时空尺度的不同,过程很相似:

小分子结构(次生以太旋涡)氧化--氚原子以太旋涡(微观以太旋涡)聚变
                                          产生氧化物--产生重核原子以太旋涡
                             产生电(振动波)--产生新的中子(振动波)

自然,这种技术涉及催化剂的选择、电路构建与电压控制、有机大分子解体所需能量单元的确定、解体后小分子化合过程的氧化剂的寻找等等问题,需在现实中探索与发现,通过以太旋涡论下的各种原理与本质的正确认识,这种技术实现的目标是不远的。

全息原理

在全息摄影技术构架中,由分束镜将一束激光分成两束光线,其中一束光线照射在要被摄影的物体上,反射时由于物体表面对光能量的吸收不同,从而光强度发生变化,表达为反射后的光携带物体的影像信息,是为物束光,另一束光为参考光。在物束光与参考光的干涉区域放一张感光胶片,胶片上就能得到物体的全息影像,即胶片的每一个微小局部区域都包含物体的整个影像信息。

由于西方科学界并没有认识到光作为以太纵波的本质,因此虽然在现实应用上发现了全息摄影技术,但并没有正确解构全息原理的内在物质作用机制,只是笼统地归于光的干涉作用。由光与波的干涉场涡形态可以来诠释这一技术构架的原理。

物束光与参考光是相同频率,不同方向的两束光波,相遇时会发生干涉。在干涉区,两束光相遇的每一个波长片断都会形成干涉场涡,这些场涡驱动空间以太形成旋涡,以太旋涡之间再融合形成一个整体覆盖整个干涉区域的大旋涡,并承载着一个大场涡,两者波流一体。场涡是一种螺旋圆周收敛形态的波传递运动,传递时的部分振动能量被禁锢在干涉区域里,而振动能量的强度变化表达为信息,如此物束光携带的物体影像信息也被禁锢在这一干涉区域里。随着这个大场涡的流转,整个物体影像的各个细节信息随之分布在整个干涉区域空间。

物体的影像精度由波长与频率与约束,每一个波峰与波谷构成的波长片断,都记录一次物体的影像信息,在一个时空区域,记录多少次物体的影像,由这个时空区域的跨度决定,比如,这个跨度是十个波长,那么就有十次物体的影像信息,这个跨度有一百个波长,那么就有一百次物体的影像信息。随着物束光与参考光每个波长片断的不断干涉,就如老唱片机的磁碟轨道将磁头的磁变化信息记录下来,这个干涉场涡持续地记录物束光每一次波动变化时携带的物体影像信息。当这个大场涡运动形态投射在感光胶片上,胶片上的每一小块区域,都包含整个物体影像的全部信息,从而获得全息胶片。这就是全息原理的内在物质作用机制。

这个全息原理在影像摄取的应用于就是全息影像技术,当下的全息技术一般指三维投影技术,与这里描绘的全息原理所指向的摄影技术不同。